用户名: 密码: 验证码:
Strontium isotope systematics of scheelite and apatite from the Felbertal tungsten deposit, Austria – results of in-situ LA-MC-ICP-MS analysis
详细信息    查看全文
  • 作者:Michael Kozlik ; Axel Gerdes ; Johann G. Raith
  • 刊名:Mineralogy and Petrology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:110
  • 期:1
  • 页码:11-27
  • 全文大小:2,081 KB
  • 参考文献:Bau M, Romer R, Lüders V, Dulski P (2003) Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England. Mineral Deposita 38:992–1008CrossRef
    Bell K, Anglin CD, Franklin JM (1989) Sm-Nd and Rb-Sr isotope systematics of scheelites: possible implications for the age and genesis of vein-hosted gold deposits. Geology 17:500–504CrossRef
    Bizzarro M, Simonetti A, Stevenson R, Kurszlaukis S (2003) In situ 87Sr/86Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS. Geochim Cosmochim Acta 67:289–302CrossRef
    Briegleb D (1987) Geologische Verhältnisse im Bereich der Scheelitlagerstätte im Felbertal, Pinzgau (Land Salzburg). Uni Aktuell Salzburg 10:10–11
    Briegleb D (1991) Die Scheelitlagerstätte im Felbertal bei Mittersill (Land Salzburg). Ber Dt Min Ges 2:48–50
    Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R (2000) Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contrib Mineral Petrol 139:251–264CrossRef
    Brugger J, Maas R, Lahaye Y, McRae C, Ghaderi M, Costa S, Lambert D, Bateman R, Prince K (2002) Origins of Nd–Sr–Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia. Chem Geol 182:203–225
    Creaser RA, Gray CM (1992) Preserved initial 87Sr/86Sr in apatite from altered felsic igneous rocks: a case study from the middle Proterozoic of South Australia. Geochim Cosmochim Acta 56:2789–2795CrossRef
    Darbyshire DPF, Pitfield PEJ, Campbell SDG (1996) Late Archean and Early Proterozoic gold-tungsten mineralization in the Zimbabwe Archean craton: Rb-Sr and Sm-Nd isotope constraints. Geology 24:19–22CrossRef
    Dostal J, Kontak D, Chatterjee AK (2009) Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: genetic implications. Mineral Petrol 97:95–109CrossRef
    Eichhorn R, Schärer U, Höll R (1995) Age and evolution of scheelite-hosting rocks in the Felbertal deposit (Eastern Alps): U-Pb geochronology of zircon and titanite. Contrib Mineral Petrol 119:377–386CrossRef
    Eichhorn R, Höll R, Jagoutz E, Schärer U (1997) Dating scheelite stages: a strontium, neodymium, lead approach from the Felbertal tungsten deposit, Central Alps, Austria. Geochim Cosmochim Acta 61:5005–5022CrossRef
    Eichhorn R, Höll R, Loth G, Kennedy A (1999) Implications of U–Pb SHRIMP zircon data on the age and evolution of the Felbertal tungsten deposit (Tauern Window, Austria). Int J Earth Sci 88:496–512CrossRef
    Eichhorn R, Loth G, Höll R, Finger F, Schermaier A, Kennedy A (2000) Multistage Variscan magmatism in the central Tauern Window (Austria) unveiled by U/Pb SHRIMP zircon data. Contrib Mineral Petrol 139:418–435CrossRef
    Eichhorn R, Loth G, Kennedy A (2001) Unravelling the pre-Variscan evolution of the Habach terrane (Tauern Window, Austria) by U-Pb SHRIMP zircon data. Contrib Mineral Petrol 142:147–162CrossRef
    Farmer GL, DePaolo DJ (1987) Nd and Sr isotope study of hydrothermally altered granite at San Manuel, Arizona; implications for element migration paths during the formation of porphyry copper ore deposits. Econ Geol 82:1142–1151CrossRef
    Finger F, Kraiger H, Steyrer HP (1985) Zur Geochemie des K1-Gneises der Scheelitlagerstätte Felbertal (Pinzgau/Salzburg) - ein Vorbericht. Der Karinthin 92:225–235
    Franz C, Grundmann G, Ackermand D (1986) Rock forming beryl from a regional metamorphic terrain (Tauern Window, Austria): parageneses and crystal chemistry. TMPM Tschermaks Miner Petrogr Mitt 35:167–192CrossRef
    Frasl G (1958) Zur Seriengliederung der Schieferhülle in den mittleren Hohen Tauern. Jb Geol B-A 101:323–472
    Ghaderi M, Palin M, Campbell IH, Sylvester PJ (1999) Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Econ Geol 94:423–438CrossRef
    Gilg HA, Höll R, Kupferschmied MP, Reitz E, Stärk H (1989) Die Basisschieferfolge in der Habachformation im Felber- und Amertal (Tauernfenster, Salzburg): Gesteinsinhalt, Geochemie, Fossilführung und genetische Implikationen. Mitt Österr Geol Ges 81:65–91
    Glodny J, Kühn A, Austrheim H (2008) Diffusion versus recrystallization processes in Rb–Sr geochronology: isotopic relics in eclogite facies rocks, Western Gneiss Region, Norway. Geochim Cosmochim Acta 72:506–525CrossRef
    Glodny J, Grauert B (2009) Evolution of a hydrothermal fluid-rock interaction system as recorded by Sr isotopes: a case study from the Schwarzwald, SW Germany. Mineral Petrol 95:163–178CrossRef
    Grundmann G (1989) Metamorphic evolution of the Habach Formation a review. Mitt Österr Geol Ges 81:133–149
    Höck V (1993) The Habach-Formation and the Zentralgneis - a key in understanding the palaeozoic evolution of the Tauern Window (Eastern Alps). In: Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer, Berlin Heidelberg New York, pp. 361–374CrossRef
    Höll R (1975) Die Scheelitlagerstätte Felbertal und der Vergleich mit anderen Scheelitvorkommen in den Ostalpen. Verlag der Bayerischen Akademie der Wissenschaften, München
    Höll R (1977) Early Palaeozoic ore deposits of the Sb-W-Hg formation. In: Klemm DD, Schneider HJ (eds) Time- and strata-bound ore deposits. Springer, Berlin Heidelberg New York, pp. 169–198CrossRef
    Höll R (1979) Time- and stratabound Early Paleozoic scheelite, stibnite and cinnabar deposits in the Eastern Alps. Verh Geol B-A 3:369–387
    Höll R, Eichhorn R (2000) Tungsten mineralization and metamorphic remobilization in the Felbertal scheelite deposit, Central Alps, Austria. In: Spry PG, Marshall B, Vokes FM (eds) metamorphosed and metamorphogenic ore deposits. Rev Econ Geol 11:233–264
    Horstwood MSA, Evans JA, Montgomery J (2008) Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel. Geochim Cosmochim Acta 72:5659–5674CrossRef
    Kebede T, Klötzli U, Kosler J, Skiöld T (2005) Understanding the pre-Variscan and Variscan basement components of the central Tauern Window, Eastern Alps (Austria): constraints from single zircon U-Pb geochronology. Int J Earth Sci 94:336–353CrossRef
    Kempe U, Belyatsky B, Krymsky R, Kremenetsky A, Ivanov P (2001) Sm–Nd and Sr isotope systematics of scheelite from the giant Au(−W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization. Mineral Deposita 36:379–392CrossRef
    Koller F, Richter W (1984) Die Metarodingite der Habachformation, Hohe Tauern (Österreich). TMPM Tschermaks Miner Petrogr Mitt 33:49–66CrossRef
    Kozlik M, Raith JG (2014) Chemical characteristics of the K1-K3 metagranitoid in the Felbertal scheelite deposit (Austria). Mitt Österr Mineral Ges 160:37–42
    Kozlik M, Raith JG, Gerdes A (2015) U-Pb, Lu-Hf and trace element characteristics of magmatic and hydrothermal zircon from the Felbertal scheelite deposit (Austria): new constraints on timing and source of W-mineralization. Chem Geol (in press)
    Lüders V, Romer R, Gilg HA, Bodnar RJ, Pettke T, Misantoni D (2009) A geochemical study of the Sweet Home Mine, Colorado Mineral Belt, USA: hydrothermal fluid evolution above a hypothesized granite cupola. Mineral Deposita 44:415–434CrossRef
    Mueller AG, de Laeter JR, Groves DI (1991) Strontium isotope systematics of hydrothermal minerals from epigenetic Archean gold deposits in the Yilgarn block, Western Australia. Econ Geol 86:780–809CrossRef
    Neinavaie MH, Ghasemi B, Fuchs HW (1983) Die Erzvorkommen Osttirols. Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum 63:69–113
    Peng B, Frei R (2004) Nd-Sr-Pb isotopic constraints on metal and fluid sources in W-Sb-Au mineralization at Woxi and Liaojiaping (western Hunan, China). Mineral Deposita 39:313–327CrossRef
    Pestal G (1983) Beitrag zur Kenntnis der Geologie im mittleren Hohen Tauern Bereich des Amer- und Felbertals. University of Vienna, Dissertation
    Raimbault L, Baumer A, Dubru M, Benkerrou C, Croze V, Zahm A (1993) REE fractionation between scheelite and apatite in hydrothermal conditions. Am Mineral 78:1275–1285
    Raith JG, Stein HJ (2006) Variscan ore formation and metamorphism at the Felbertal scheelite deposit (Austria): constraining tungsten mineralisation from Re–Os dating of molybdenite. Contrib Mineral Petrol 152:505–521CrossRef
    Raith JG, Schmidt S (2010) Tungsten deposit Felbertal, Salzburg, Austria. Acta Mineralogica-Petrographica, Field Guide Series 3:1–24
    Raith JG, Gerdes A, Cornell DH (2011) In situ U-Pb dating of scheelite: constraints on the age and genesis of the Felbertal tungsten deposit. Mineral Mag 75:1690
    Rankenburg K (2002) Megacrysts in volcanic rocks of the Cameroon volcanic line – constraints of magma genesis and contamination. University of Frankfurt, Dissertation
    Romer RL (1996) U-Pb systematics of stilbite-bearing low-temperature mineral assemblages from the Malmberget iron ore, northern Sweden. Geochim Cosmochim Acta 60:1951–1961CrossRef
    Sallet R, Moritz R, Fontignie D (2000) Fluorite 87Sr/86Sr and REE constraints on fluid-melt relations, crystallization time span and bulk D Sr of evolved high-silica granites. Tabuleiro granites, Santa Catarina, Brazil. Chem Geol 164:81–92CrossRef
    Schenk P (1990) Mikrothermometrische gefügekundliche und geochemische Untersuchungen zur Genese der Scheelitlagerstätte Felbertal/Ostalpen. University of Munich, Dissertation
    Song G, Qin K, Li G, Evans NJ, Chen L (2014) Scheelite elemental and isotopic signatures: implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui province, eastern China. Am Mineral 99:303–317CrossRef
    Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33CrossRef
    Topa D, Makovicky E, Paar WH (2002) Composition ranges and exsolution pairs for the members of the bismuthinite-aikinite series from Felbertal, Austria. Can Mineral 40:849–869CrossRef
    Tornos F, Galindo C, Crespo JL, Spiro BF (2008) Geochemistry and origin of calcic tungsten-bearing skarns, Los Santos, Central Iberian Zone, Spain. Can Mineral 46:87–109CrossRef
    Tsuboi M (2005) The use of apatite as a record of initial 87Sr/86Sr ratios and indicator of magma processes in the Inagawa pluton, Ryoke belt, Japan. Chem Geol 221:157–169CrossRef
    Voicu G, Bardoux M, Stevenson R, Jébrak M (2000) Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: implications for ore fluid source and flow path during the formation of orogenic gold deposits. Mineral Deposita 35:302–314CrossRef
    von Quadt A (1985) Geochronologische, geochemische und isotopengeochemische Untersuchungen an Gesteinen der Habach-Formation, der Scheelitlagerstätte und des angrenzenden Altkristallins im Felbertal (Land Salzburg). Dissertation, Eidgenössische Technische Hochschule Zürich
    von Quadt A (1992) U-Pb zircon and Sm-Nd geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (eastern Alps). Contrib Mineral Petrol 110:57–67CrossRef
    Woodhead JD, Hergt JM (2001) Strontium, neodymium and lead isotope analyses of NIST glass certified reference materials: SRM 610, 612, 614. Geostand Newslett 25:261–266CrossRef
    Zuddas P, Seimbille F, Michard G (1995) Granite-fluid interaction at near-equilibrium conditions: experimental and theoretical constraints from Sr contents and isotopic ratios. Chem Geol 121:145–154CrossRef
  • 作者单位:Michael Kozlik (1)
    Axel Gerdes (2)
    Johann G. Raith (1)

    1. Department of Applied Geosciences and Geophysics, Montanuniversität Leoben, Peter Tunner Straße 5, 8700, Leoben, Austria
    2. Institute of Geosciences, Mineralogy, Johann Wolfgang von Goethe University, Altenhöferallee 1, 60438, Frankfurt, Germany
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Mineralogy
    Geochemistry
  • 出版者:Springer Wien
  • ISSN:1438-1168
文摘
The in-situ Sr isotopic systematics of scheelite and apatite from the Felbertal W deposit and a few regional Variscan orthogneisses (“Zentralgneise”) have been determined by LA-MC-ICP-MS. The 87Sr/86Sr ratios of scheelite and apatite from the deposit are highly radiogenic and remarkably scattering. In the early magmatic-hydrothermal scheelite generations (Scheelite 1 and 2) the 87Sr/86Sr ratios range from 0.72078 to 0.76417 and from 0.70724 to 0.76832, respectively. Metamorphic Scheelite 3, formed by recrystallisation and local mobilisation of older scheelite, is characterised by even higher 87Sr/86Sr values between 0.74331 and 0.80689. Statistics allows discriminating the three scheelite generations although there is considerable overlap between Scheelite 1 and 2; they could be mixtures of the same isotopic reservoirs. The heterogeneous and scattering 87Sr/86Sr ratios of the two primary scheelite generations suggest modification of the Sr isotope system due to fluid-rock interaction and isotopic disequilibrium. Incongruent release of 87Sr from micas in the Early Palaeozoic host rocks of the Habach Complex contributed to the solute budget of the hydrothermal fluids and may explain the radiogenic Sr isotope signature of scheelite. Spatially resolved analyses revealed isotopic disequilibrium even on a sub-mm scale within zoned Scheelite 2 crystals indicating scheelite growth in an isotopic dynamical hydrothermal system. Zoned apatite from the W mineralised Early Carboniferous K1-K3 orthogneiss in the western ore field yielded 87Sr/86Sr of 0.72044–0.74514 for the cores and 0.74535–0.77937 for the rims. Values of magmatic apatite cores from the K1-K3 orthogneiss are comparable to those of primary Scheelite 1; they are too radiogenic to be magmatic. The Sr isotopic composition of apatite cores was therefore equally modified during the hydrothermal mineralisation processes, therefore supporting the single-stage genetic model in which W mineralisation is associated with the intrusion of the K1-K3 metagranitoid at Felbertal. The subsequent regional metamorphic overprint of the deposit caused redistribution of 87Sr as a consequence of metamorphic reactions involving Rb and Sr-bearing minerals. Metamorphic Scheelite 3 and apatite rims (e.g., in the K1-K3 orthogneiss) generally became more radiogenic during this process. However, local recrystallisation of primary scheelite under closed conditions (without addition of 87Sr by the metamorphic fluid) is also documented. The latter process resulted in a homogenisation of the isotope composition of Scheelite 3. Further increase in 87Sr/86Sr ratios in Scheelite 3 and apatite rims is attributed to Late Alpine (?) metamorphic recrystallisation and redistribution of 87Sr by metamorphic fluids. Editorial handling: D. FreiElectronic supplementary materialThe online version of this article (doi:10.​1007/​s00710-015-0416-0) contains supplementary material, which is available to authorized users.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700