用户名: 密码: 验证码:
Bottom-up synthesis of ultrathin straight platinum nanowires: Electric field impact
详细信息    查看全文
  • 作者:Alexander Nerowski (1303)
    Joerg Opitz (1303) (2303)
    Larysa Baraban (1303)
    Gianaurelio Cuniberti (1303) (3303)
  • 关键词:bottom ; up growth ; directed electrochemical nanowire assembly (DENA) ; metal nanowires ; nanostructuring ; nanoelectronics ; local electric field
  • 刊名:Nano Research
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:6
  • 期:5
  • 页码:303-311
  • 全文大小:661KB
  • 参考文献:1. Cheng, G.; Siles, P. F.; Bi, F.; Cen, C.; Bogorin, D. F.; Bark, C. W.; Folkman, C. M.; Park, J.-W.; Eom, C.-B.; Medeiros-Ribeiro, G.; et al. Sketched oxide single-electron transistor. / Nat. Nanotechnol. 2011, / 6, 343鈥?47. CrossRef
    2. Blunt, M. O.; Russell, J. C.; Gimenez-Lopez, M. d. C.; Taleb, N.; Lin, X.; Schr枚der, M.; Champness, N. R.; Beton, P. H. Guest-induced growth of a surface-based supramolecular bilayer. / Nat. Chem. 2011, / 3, 74鈥?8. CrossRef
    3. Wang, D.; Sheriff, B. A.; Heath, J. R. Silicon p-FETs from ultrahigh density nanowire arrays. / Nano Lett. 2006, / 6, 1096鈥?100. CrossRef
    4. Kuzyk, A. Dielectrophoresis at the nanoscale. / Electrophoresis 2011, / 32, 2307鈥?313.
    5. Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. / Science 2003, / 300, 112鈥?15. CrossRef
    6. Yang, P.; Yan, R.; Fardy, M. Semiconductor nanowire: What鈥檚 next? / Nano Lett. 2010, / 10, 1529鈥?536. CrossRef
    7. Mijatovic, D.; Eijkel, J. C. T.; van den Berg, A. Technologies for nanofluidic systems: Top-down vs. bottom-up-A review. / Lab Chip 2005, / 5, 492鈥?00. CrossRef
    8. He, B.; Morrow, T. J.; Keating, C. D. Nanowire sensors for multiplexed detection of biomolecules. / Curr. Opin. Chem. Biol. 2008, / 12, 522鈥?28. CrossRef
    9. Lal, S.; Hafner, J. H.; Halas, N. J.; Link, S.; Nordlander, P. Noble metal nanowires: From plasmon waveguides to passive and active devices. / Acc. Chem. Res. 2012, / 45, 1887鈥?895. CrossRef
    10. Yogeswaran, U.; Chen, S.-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. / Sensors 2008, / 8, 290鈥?13. CrossRef
    11. Balasubramanian, K. Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: A review. / Biosens. Bioelectron. 2010, / 26, 1195鈥?04. CrossRef
    12. Nerowski, A.; Poetschke, M.; Bobeth, M.; Opitz, J.; Cuniberti, G. Dielectrophoretic growth of platinum nanowires: Concentration and temperature dependence of the growth velocity. / Langmuir 2012, / 28, 7498鈥?504. CrossRef
    13. Pohl, H. A. / Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields; Cambridge University Press: Cambridge, 1978.
    14. Li, M.; Bhiladvala, R. B.; Morrow, T. J.; Sioss, J. A.; Lew, K.-K.; Redwing, J. M.; Keating, C. D.; Mayer, T. S. Bottomup assembly of large-area nanowire resonator arrays. / Nat. Nanotechnol. 2008, / 3, 88鈥?2. CrossRef
    15. Papadakis, S.; Hoffmann, J.; Deglau, D.; Chen, A. Tyagi P.; Gracias D. H. Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. / Nanoscale 2011, / 3, 1059鈥?065. CrossRef
    16. Hermanson, K. D.; Lumsdon, S. O.; Williams, J. P.; Kaler, E. W.; Velev, O. D. Dielectrophoretic assembly of electrically functional microwires From nanoparticle suspensions. / Science 2001, / 294, 1082鈥?086. CrossRef
    17. Cheng, C.; Gonela, R. K.; Gu, Q.; Haynie, D. T. Self-assembly of metallic nanowires from aqueous solution. / Nano Lett. 2005, / 5, 175鈥?78. CrossRef
    18. La Ferrara, V.; Madathil, A. P.; Mauro, A. D. G. D.; Massera, E.; Polichetti, T.; Rametta, G. The effect of solvent on the morphology of ZnO nanostructure assembly by dielectrophoresis and its device applications. / Electrophoresis 2012, / 33, 2086鈥?093. CrossRef
    19. Flanders, B. N. Directed electrochemical nanowire assembly: Precise nanostructrue assembly via dendritic solidification. / Mod. Phys. Lett. B 2012, / 26, 1130001. CrossRef
    20. Ranjan, N.; Vinzelberg, H.; Mertig, M. Growing onedimensional metallic nanowires by dielectrophoresis. / Small 2006, / 2, 1490鈥?496. CrossRef
    21. Bhatt, K. H.; Velev, O. D. Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. / Langmuir 2004, / 20, 467鈥?76. CrossRef
    22. Gierhart, B. C.; Howitt, D. G.; Chen, S. J.; Smith, R. L.; Collins, S. D. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. / Langmuir 2007, / 23, 12450鈥?2456. CrossRef
    23. Ozturk, B.; Talukdar, I.; Flanders, B. N. Directed growth of diameter-tunable nanowires. / Nanotechnology 2007, / 18, 365302. CrossRef
    24. Shelimov, B.; Lambert, J. F.; Che, M.; Didillon, B. Application of NMR to interfacial coordination chemistry: A 195Pt NMR study of the interaction of hexachloroplatinic acid aqueous solutions with alumina. / J. Am. Chem. Soc. 1999, / 121, 545鈥?56. CrossRef
    25. Kawasaki, J. K.; Arnold, C. B. Synthesis of latinum dendrites and nanowires via directed electrochemical nanowire assembly. / Nano Lett. 2011, / 11, 781鈥?85. CrossRef
    26. Ciobanas, A. I.; Bejan, A.; Fautrelle, Y. Dendritic solidification morphology viewed from the perspective of constructal theory. / J. Phys. D: Appl. Phys. 2006, / 39, 5252鈥?266. CrossRef
    27. Marcus, Y. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. / Biophys. Chem. 1994, / 51, 111鈥?27. CrossRef
    28. Gierer, A.; Wirtz, K. Molekulare theorie der mikroreibung (Molecular theory of microfriction). / Z. Naturforschg. 1953, / 8a, 532鈥?38.
    29. Lalibert茅, M. Model for calculating the viscosity of aqueous solutions. / J. Chem. Eng. Data 2007, / 52, 321鈥?35. CrossRef
    30. Trivedi, R.; Lipton, J.; Kurz, W. Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts. / Acta Metall. 1987, / 35, 965鈥?70. CrossRef
    31. Thapa, P. S.; Ackerson, B. J.; Grischkowsky, D. R.; Flanders, B. N. Directional growth of metallic and polymeric nanowires. / Nanotechnology 2009, / 20, 235307. CrossRef
    32. Ranjan, N.; Mertig, M.; Cuniberti, G.; Pompe, W. Dielectrophoretic growth of metallic nanowires and microwires: Theory and experiments. / Langmuir 2010, / 26, 552鈥?59. CrossRef
    33. Lumsdon, S. O.; Scott, D. M. Assembly of colloidal particles into microwires using an alternating electric field. / Langmuir 2005, / 21, 4874鈥?880. CrossRef
  • 作者单位:Alexander Nerowski (1303)
    Joerg Opitz (1303) (2303)
    Larysa Baraban (1303)
    Gianaurelio Cuniberti (1303) (3303)

    1303. Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, Dresden, 01062, Germany
    2303. Fraunhofer Institute for Non-Destructive Testing, Dresden, 01109, Germany
    3303. Division of IT Convergence Engineering, POSTECH, Pohang, 790-784, Republic of Korea
  • ISSN:1998-0000
文摘
We present a study of the electric field effect on electrochemically grown ultrathin, straight platinum nanowires with minimum diameter of 15 nm and length in the micrometer range, synthesized on a silicon oxide substrate between metal electrodes in H2PtCl6 solution. The influence of the concentration of the platinumcontaining acid and the frequency of the applied voltage on the diameter of the nanowires is discussed with a corresponding theoretical analysis. We demonstrate for the first time that the electric field profile, provided by the specific geometry of the metal electrodes, dramatically influences the growth and morphology of the nanowires. Finally, we provide guidelines for the controlled fabrication and contacting of straight, ultrathin metal wires, eliminating branching and dendritic growth, which is one of the main shortcomings of the current bottom-up nanotechnology. The proposed concept of self-assembly of thin nanowires, influenced by the electric field, potentially represents a new route for guided nanocontacting via smart design of the electrode geometry. The possible applications reach from nanoelectronics to gas sensors and biosensors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700