用户名: 密码: 验证码:
Efficacy of urinary N-acetyl-β-D-glucosaminidase to evaluate early renal tubular damage as a consequence of type 2 diabetes mellitus: a cross-sectional study
详细信息    查看全文
  • 作者:Dhara N. Patel ; Kiran Kalia
  • 关键词:Urinary N ; acetyl ; β ; d ; glucosaminidase ; Serum N ; acetyl ; β ; d ; glucosaminidase ; Proximal tubular damage ; Type 2 diabetes mellitus ; Diabetic nephropathy
  • 刊名:International Journal of Diabetes in Developing Countries
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:35
  • 期:3-supp
  • 页码:449-457
  • 全文大小:481 KB
  • 参考文献:1.Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endorinol Metab. 2008;4:444–52.CrossRef
    2.Hong CY, Chia KS. Markers of diabetic nephropathy. J Diabetes Complicat. 1998;12:43–60.PubMed CrossRef
    3.Wolf G, Ziyadeh F. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 1999;56:393–405.PubMed CrossRef
    4.Phillips AO, Steadman R. Diabetic nephropathy: the central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol. 2002;17:247–52.PubMed
    5.Turecky L, Uhlikova E. Diagnostic significance of urinary enzymes in nephrology. Bratisl Lek Listy. 2003;104(1):27–31.PubMed
    6.Fukui M, Nakamura T, Ebihara I, Shirato I, Tomino Y, Koide H. ECM gene expression and its modulation by insulin in diabetic rats. Diabetes. 1992;41:1520–7.PubMed CrossRef
    7.Steffes MW, Osterby R, Chavers B, Mauer M. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes. 1989;38:1077–81.PubMed CrossRef
    8.Caramori ML, Fioretto P, Mauer M. The need for early predictors of diabetic nephropathy risk is albumin excretion rate sufficient? Diabetes. 2000;49:1399–408.PubMed CrossRef
    9.Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem. 1992;38(10):1933–53.PubMed
    10.Belfiore F, Napoli E, Vecchio LL. Serum N-acetyl-beta-glucosaminidase activity in diabetic patients. Diabetes. 1972;21(12):1168–72.PubMed CrossRef
    11.Price RG, Dance N. The cellular distribution of some rat-kidney glycosidases. Biochem J. 1967;105:877–83.PubMed PubMedCentral CrossRef
    12.Karakani MA, Haghighi SA, Khansari MG, Hosseini R. Determination of urinary enzymes as a marker of early renal damage in diabetic patients. J Clin Lab Anal. 2007;21:413–7.CrossRef
    13.Piwowar A, Kordecka MK, Fus I, Warwas M. Urinary activities of cathepsin B, N-acetyl-beta-d -glucosaminidase, and albuminuria in patients with type 2 diabetes mellitus. Med Sci Monit. 2006;12(5):CR210–4.PubMed
    14.Bazzi C, Petrini C, Rizza V, Arrigo G, Napodano P, et al. Urinary N-acetyl-b-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol Dial Transplant. 2002;17:1890–6.PubMed CrossRef
    15.Han W, Waikar S, Johnson A, Betensky R, Dent C, Devarajan P, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008;73:863–9.PubMed PubMedCentral CrossRef
    16.Fu W, Xiong S, Fang Y, Wen S, Chen M, Deng R, et al. Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: a cross-sectional study. Endocrine. 2012;41:82–8.PubMed CrossRef
    17.Ouchi M, Suzuki T, Hashimoto M, Motoyama M, Ohara M, Suzuki K, et al. Urinary N-acetyl-β-d -glucosaminidase levels are positively correlated with 2-h plasma glucose levels during oral glucose tolerance testing in prediabetes. J Clin Lab Anal. 2012;26:473–80.PubMed PubMedCentral CrossRef
    18.Kroll MH, Chesler R, Hagengruber C, Blank DW, Kestner J, Rawe M. Automated determination of urinary creatinine without sample dilution: theory and practice. Clin Chem. 1986;32(3):446–52.PubMed
    19.Cockroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.CrossRef
    20.Parker KM, England JD, Da Costa J, Hess RL, Gloldstein DE. Improved colorimetric assay for glycated hemoglobin. Clin Chem. 1981;27(5):669–72.PubMed
    21.Horak E, Hopfer SM, Sunderman Jr WF. Spectrophotometric assay for urinary N-acetyl-b-d -glucosaminidase. Clin Chem. 1981;27(7):1180–5.PubMed
    22.Lehmann R, Schleicher ED. Molecular mechanism of diabetic nephropathy. Clin Chim Acta. 2000;297:135–44.PubMed CrossRef
    23.Fua WJ, Liang LB, Wang SB, Chen ML, Deng TR, Qin YC, et al. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration. Diabetes Res Clin Pract. 2012;95:105–9.CrossRef
    24.Kalia K, Sharma S, Mistry K. Non-enzymatic glycosylation of immunoglobulins in diabetic nephropathy. Clin Chim Acta. 2004;347:169–76.PubMed CrossRef
    25.Mohan S, Kalia K, Mannari J. Diabetic nephropathy and associated risk factors for renal deterioration. Int J Diabetes Dev Ctries. 2012;32(1):52–9.CrossRef
    26.Mohan S, Kalia K, Mannari J. Urinary IgG is a pure strong indicator of diabetic nephropathy than microalbuminuria in type 2 diabetic patients. Int J Diabetes Dev Ctries. 2013;33(1):46–54.CrossRef
    27.Barratt J, Topham P. Urine proteomics: the present and future of measuring urinary protein components in disease. CMAJ. 2007;177(4):361–8.PubMed PubMedCentral CrossRef
    28.Moresco RN, Sangoi MB, Carvalho J, Tatsch E, Bochi G. Diabetic nephropathy: traditional to proteomic markers. Clin Chim Acta. 2013;421:17–30.PubMed CrossRef
    29.Nauta FL, Boertien WE, Bakker SJ, Goor HV, Oeveren WV, Jong PE, et al. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care. 2011;34:975–81.PubMed PubMedCentral CrossRef
    30.Abate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol. 2006;17:2974–84.CrossRef
    31.Kalansooriya A, Jennings P, Haddad F, Holbrook I, Whiting PH. Urinary enzyme measurements as early indicators of renal insult in type 2 diabetes. Br J Biomed Sci. 2007;64(4):153–6.PubMed
    32.Vestra MD, Masiero A, Roiter AM, Saller A, Crepaldi G, Fioretto P. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes. 2003;52:1031–5.PubMed CrossRef
    33.Ding H, He Y, Lia K, Yang J, Li X, Lu R, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy. Cin Immu. 2007;123:227–34.CrossRef
    34.Barratt J, Feehally J. IgA nephropathy. J Am Soc Nephrol. 2005;16:2088–97.PubMed CrossRef
    35.Floege J, Feehally J. IgA nephropathy: recent developments. J Am Soc Nephrol. 2000;11:2395–403.PubMed
    36.Soler MJ, Mir M, Rodriguez E, OrWla A, Munne A, Vazquez S, et al. Recurrence of IgA nephropathy and Henoch-Schoenlein purpura after kidney transplantation: risk factors and graft survival. Transplant Proc. 2005;37:3705–9.PubMed CrossRef
  • 作者单位:Dhara N. Patel (1)
    Kiran Kalia (1) (2)

    1. Laboratory of Biochemistry, B.R.D. School of Biosciences, Sardar Patel University, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Post Box No. 39, Vallabh Vidyanagar, 388 120, Gujarat, India
    2. National Institute of Pharmaceutical Education and Research (NIPER-G); Gandhinagar, c/o B V Patel PERD Centre, SG Highway, Thaltej, Ahmedabad, 380 054, Gujarat, India
  • 刊物主题:Medicine/Public Health, general; General Practice / Family Medicine; Health Administration; Diabetes;
  • 出版者:Springer India
  • ISSN:1998-3832
文摘
We assessed the prognostic accuracy of urinary N-acetyl-β-D-glucosaminidase (NAG), an early proximal tubular damage marker for the onset of diabetic nephropathy. The study included 491 eligible participants with 76 healthy controls, 194 type 2 diabetes mellitus (T2DM) patients with 0–5, 5–10, 10–15, and 15–20 years of T2DM duration, 71 microalbuminuric patients, 100 diabetic nephropathy patients, and 50 non-diabetic nephropathy patients. Fasting glucose, serum fructosamine, HbA1C, urinary microalbumin, serum creatinine, estimated glomerular filtration rate (eGFR), serum NAG, and urinary NAG were estimated. We compared urinary NAG activity with other well-established markers of diabetic nephropathy like microalbuminuria, eGFR, and serum creatinine. Urinary NAG excretion was increased by 8 and 12 folds in T2DM patients of 10–15 and 15–20 years of diabetes duration (p < 0.0001), respectively, without the appearance of microalbuminuria. The urinary NAG activity increased 16 and 18 fold in moderately increased albuminuria and diabetic nephropathy patients, respectively (p < 0.0001), without any change in non-diabetic nephropathy patients. A cutoff value of 3 U/L of urinary NAG has demonstrated a sensitivity of 96.1 % and a specificity of 100 % discriminating healthy controls from patients with T2DM duration of 10–15 years (AUC 1.000) and 15–20 years (AUC 0.999); microalbuminuria (AUC 0.999), and diabetic nephropathy (AUC 1.000). Urinary NAG excretion gradually increases with the increase in duration of diabetes and appeared much before the microalbuminuria, decreased eGFR, and increased serum creatinine. Thus, the urinary NAG may be considered as a potential site-specific early tubular damage marker leading to diabetic nephropathy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700