用户名: 密码: 验证码:
Interfacial Properties of Saponin Extracts and Their Impact on Foam Characteristics
详细信息    查看全文
  • 作者:Sandra Böttcher ; Stephan Drusch
  • 关键词:Foam analysis ; Saponin ; Botanical origin ; Short ; term adsorption ; Interfacial tension ; Natural surfactant
  • 刊名:Food Biophysics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:11
  • 期:1
  • 页码:91-100
  • 全文大小:1,046 KB
  • 参考文献:1.I. Raskin, D.M. Ribnicky, S. Komarnytsky, N. Ilic, A. Poulev, N. Borisjuk, A. Brinker, D.A. Moreno, C. Ripoll, N. Yakoby, J.M. O’Neal, T. Cornwell, I. Pastor, B. Fridlender, Plants and human health in the twenty-first century. Trends Biotechnol. 20, 522–531 (2002)CrossRef
    2.E. Pojer, F. Mattivi, D. Johnson, C.S. Stockley, The case for anthocyanin consumption to promote human health: a review. Comprehensive Reviews in Food Science and Food Safety 12, 483–508 (2013)CrossRef
    3.H. Schroeter, C. Heiss, J.P. Spencer, C.L. Keen, J.R. Lupton, H.H. Schmitz, Recommending flavanols and procyanidins for cardiovascular health: current knowledge and future needs. Mol. Asp. Med. 31, 546–557 (2010)CrossRef
    4.S.G. Sparg, M.E. Light, J. van Staden, Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219–243 (2004)CrossRef
    5.K. Haralampidis, M. Trojanowska, A.E. Osbourn, Biosynthesis of triterpenoid saponins in plants. Adv. Biochem. Eng. Biotechnol. 75, 31–49 (2002)
    6.J.-P. Vincken, L. Heng, A. de Groot, H. Gruppen, Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68, 275–297 (2007)CrossRef
    7.B. Dinda, S. Debnath, B.C. Mohanta, Y. Harigaya, Naturally occurring triterpenoid saponins. Chem. Biodivers. 7, 2327–2580 (2010)CrossRef
    8.W. Oleszek, Z. Bialy, Chromatographic determination of plant saponins—an update (2002–2005). J. Chromatogr. A 1112, 78–91 (2006)CrossRef
    9.S. Yao, J. Luo, X. Huang, L. Kong, Application of preparative high-speed counter-current chromatography/preparative high-performance liquid chromatography mode in rapid separation of saponins. J. Chromatogr. B 864, 69–77 (2008)CrossRef
    10.A. Kezwon, K. Wojciechowski, Interaction of quillaja bark saponins with food-relevant proteins. Adv. Colloid Interf. Sci., 185–195 (2014)
    11.S. Mitra, S.R. Dungan, Micellar Properties of Quillaja Saponin. 1. Effects of Temperature, Salt, and pH on Solution Properties. J. Agric. Food Chem. 45, 1587–1595 (1997)CrossRef
    12.R. Stanimirova, K. Marinova, S. Tcholakova, N.D. Denkov, S. Stoyanov, E. Pelan, Surface rheology of saponin adsorption layers. Langmuir 27, 12486–12498 (2011)CrossRef
    13.K. Golemanov, S. Tcholakova, N. Denkov, E. Pelan, S.D. Stoyanov, Surface shear rheology of saponin adsorption layers. Langmuir 28, 12071–12084 (2012)CrossRef
    14.K. Wojciechowski, Surface activity of saponin from quillaja bark at the air/water and oil/water interfaces. Colloids Surf. B: Biointerfaces 108, 95–102 (2013)CrossRef
    15.Y. Yang, M.E. Leser, A.A. Sher, D.J. McClements, Formation and stability of emulsions using a natural small molecule surfactant: quillaja saponin (Q-naturale®). Food Hydrocoll. 30, 589–596 (2013)CrossRef
    16.K. Golemanov, S. Tcholakova, N. Denkov, E. Pelan, S.D. Stoyanov, Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins. Soft Matter 9, 5738–5752 (2013)CrossRef
    17.K. Wojciechowski, M. Piotrowski, W. Popielarz, T.R. Sosnowski, Short- and mid-term adsorption behaviour of quillaja bark saponin and its mixtures with lysozyme. Food Hydrocoll. 25, 687–693 (2011)CrossRef
    18.M. Piotrowski, J. Lewandowska, K. Wojciechowski, Biosurfactant–protein mixtures: quillaja bark saponin at water/air and water/oil interfaces in presence of β-lactoglobulin. J. Phys. Chem. B 116, 4843–4850 (2012)CrossRef
    19.Y.-F. Chen, C.-H. Yang, M.-S. Chang, Y.-P. Ciou, Y.-C. Huang, Foam properties and detergent abilities of the saponins from camellia oleifera, Ijms 11 (2010) 4417–4425.
    20.J. Bankefors, L.I. Nord, L. Kenne, Structural classification of quillaja saponins by electrospray ionization ion trap multiple-stage mass spectrometry in combination with multivariate analysis, proof of concept. Chemom. Intell. Lab. Syst. 90, 178–187 (2008)CrossRef
    21.B. Thalhamer, M. Himmelsbach, Characterization of quillaja bark extracts and evaluation of their purity using liquid chromatography–high resolution mass spectrometry. Phytochem. Lett. 8, 97–100 (2014)CrossRef
    22.D. Frechet, B. Christ, du sorbier, Bertrand monegier, H. Fischer, M. Vuilhorgne, four triterpenoid saponins from dried roots of gypsophila species. Phytochemistry 30, 927–931 (1991)CrossRef
    23.Q. Chen, J.-G. Luo, L.-Y. Kong, New triterpenoid saponins from the roots of gypsophila perfoliata Linn. Carbohydr. Res. 346, 2206–2212 (2011)CrossRef
    24.S. Yao, J.-G. Luo, L. Ma, L.-Y. Kong, Two new triterpenoid saponins from the roots of gypsophila paniculata with potent α-glucosidase inhibition activity. Chinese Journal of Natural Medicines 9, 401–405 (2011)
    25.L. Voutquenne-Nazabadioko, R. Gevrenova, N. Borie, D. Harakat, C. Sayagh, A. Weng, M. Thakur, M. Zaharieva, M. Henry, Triterpenoid saponins from the roots of gypsophila trichotoma wender. Phytochemistry 90, 114–127 (2013)CrossRef
    26.D. Pertuit, S. Avunduk, A.-C. Mitaine-Offer, T. Miyamoto, C. Tanaka, T. Paululat, S. Delemasure, P. Dutartre, M.-A. Lacaille-Dubois, Triterpenoid saponins from the roots of two gypsophila species. Phytochemistry 102, 182–188 (2014)CrossRef
    27.P.-C. Kuo, T.-C. Lin, C.-W. Yang, C.-L. Lin, G.-F. Chen, J.-W. Huang, Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani. J. Agric. Food Chem. 58, 8618–8622 (2010)CrossRef
    28.Q. Huang, M. He, H. Chen, L. Shao, D. Liu, Y. Luo, Y. Dai, Protective effects of sasanquasaponin on injury of endothelial cells induced by anoxia and reoxygenation in vitro. Basic Clin. Pharmacol. Toxicol. 101, 301–308 (2007)CrossRef
    29.X.-F. Zhang, Y.-Y. Han, G.-H. Bao, T.-J. Ling, L. Zhang, L.-P. Gao, T. Xia, A new saponin from tea seed pomace (camellia oleifera Abel) and its protective effect on PC12 cells. Molecules 17, 11721–11728 (2012)CrossRef
    30.H. Zhou, C.Z. Wang, J.Z. Ye, H.X. Chen, New triterpene saponins from the seed cake of camellia oleifera and their cytotoxic activity. Phytochem. Lett. 8, 46–51 (2014)CrossRef
    31.G. Wulff, R. Tschesche, Über triterpene - XXVI: über die struktur der rosskastaniensaponine (aescin) und die aglykone verwandter glykoside. Tetrahedron 25, 415–436 (1969)CrossRef
    32.D. Dinchev, B. Janda, L. Evstatieva, W. Oleszek, M.R. Aslani, I. Kostova, Distribution of steroidal saponins in tribulus terrestris from different geographical regions. Phytochemistry 69, 176–186 (2008)CrossRef
    33.A.M. Khan, S.S. Shah, Determination of CMC of SDS and the effect of low concentration of pyrene on its CMC. J. Chem. Soc. Pak. 30, 186–191 (2008)
    34.IsoFit. http://​www.​thomascat.​info/​Scientific/​AdSo/​AdSo.​htm .
    35.F. Tamm, G. Sauer, M. Scampicchio, S. Drusch, Pendant drop tensiometry for the evaluation of the foaming properties of milk-derived proteins. Food Hydrocoll. 27, 371–377 (2012)CrossRef
    36.A. Ward, L. Tordai, Time-dependence of boundary tensions of solutions I. The role of diffusion in time-effects. J. Chem. Phys. 14, 453 (1946)CrossRef
    37.K. Lunkenheimer, K. Malysa, K. Winsel, K. Geggel, S. Siegel, Novel method and parameters for testing and characterization of foam stability. Langmuir 26, 3883–3888 (2010)CrossRef
    38.S. Karakashev, E. Manev, A. Nguyen, Interpretation of negative values of the interaction parameter in the adsorption equation through the effects of surface layer heterogeneity. Adv. Colloid Interf. Sci. 112, 31–36 (2004)CrossRef
    39.V.L. Kolev, K.D. Danov, P.A. Kralchevsky, G. Broze, A. Mehreteab, Comparison of the van der Waals and frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations. Langmuir 18, 9106–9109 (2002)CrossRef
    40.V. Fainerman, E. Lucassen-Reynders, R. Miller, Adsorption of surfactants and proteins at fluid interfaces. Colloids Surf. A Physicochem. Eng. Asp. 143, 141–165 (1998)CrossRef
    41.M. Rodriguez Nino, C. Sanchez, V. Ruizhenestrosa, J. Patino, Milk and soy protein films at the air/water interface. Food Hydrocoll. 19, 417–428 (2005)CrossRef
    42.J. Feng, Y. Chen, X. Liu, S. Liu, Efficient improvement of surface activity of tea saponin through Gemini-like modification by straightforward esterification. Food Chem. 171, 272–279 (2015)CrossRef
    43.M. Almutairi, M. Ali, Direct detection of saponins in crude extracts of soapnuts by FTIR. Nat. Prod. Res. 29, 1271–1275 (2015)CrossRef
    44.P.C. Pavan, E.L. Crepaldi, de a. Gomes, gilmar, J.B. Valim, adsorption of sodium dodecylsulfate on a hydrotalcite-like compound. Effect of temperature, pH and ionic strength. Colloids Surf. A Physicochem. Eng. Asp. 154, 399–410 (1999)CrossRef
    45.G. do Canto, J. Treter, S. Yang, G. Borré, M. Peixoto, G. Ortega, Evaluation of foam properties of saponin from Ilex paraguariensis A. St. Hil. (Aquifoliaceae) fruits, Braz. J. Pharm. Sci. 46, 237–243 (2010)
  • 作者单位:Sandra Böttcher (1)
    Stephan Drusch (1)

    1. Institute for Food Technology and Food Chemistry, Department of Food Technology and Food Material Science, Technische Universität Berlin, Königin-Luise-Str.22, 14195, Berlin, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Food Science
    Biophysics and Biomedical Physics
    Analytical Chemistry
  • 出版者:Springer New York
  • ISSN:1557-1866
文摘
Saponins from various botanical origins highly differ in molecular structure. Little is known of the influence of structural differences between the different saponins on interfacial tension, short-term adsorption and foam properties at the air-water interface (a/w). In this study five triterpenoid saponins, with three of these being monodesmosidic and two bidesmosidic as well as one steroid saponin, were analyzed. Interfacial tension isotherms were measured using a tensiometer with a Wilhelmy plate and were fitted using the modified Frumkin model. For characterization of the short-term adsorption at the a/w-interface, two-fluid needle experiments were performed. Foaming, foam stability and foam structure were analyzed using a foaming device. A new method for semi-quantitative analysis of different foam structures was established. Additionally the impact of pH and ionic strength (addition of NaCl) on interfacial tension and foam properties were determined. The short-term adsorption of all saponins was limited by an additional barrier and was not diffusion-limited. Extracts from Quillaja saponaria Molina (QS), Gypsophila (GYP), Camellia oleifera Abel (TS) and Aesculus hippocastanum (ESC) lowered the interfacial tension to 37–42 mN/m and produced stable foams. The steroid saponin from Tribulus terrestris (TT) and the monodesmosidic saponin from Glycyrrhiza glabra (GA) had only poor interfacial and foam properties. Foams made from QS and GYP were only little affected by changes in pH and ionic strength. A reduction of the pH from 5 to 3 increased stability of foams made from GA significantly. Foams made from ESC and TS were negatively affected by increasing ionic strength. Keywords Foam analysis Saponin Botanical origin Short-term adsorption Interfacial tension Natural surfactant

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700