用户名: 密码: 验证码:
Characterization of a new aryl-alcohol oxidase secreted by the phytopathogenic fungus Ustilago maydis
详细信息    查看全文
  • 作者:Marie Couturier ; Yann Mathieu ; Ai Li…
  • 关键词:Aryl ; alcohol oxidase ; Ustilago maydis ; CAZy ; AA3 ; Lignin ; Biorefinery
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:100
  • 期:2
  • 页码:697-706
  • 全文大小:1,247 KB
  • 参考文献:Berrin JG, Navarro D, Couturier M, Olivé C, Grisel S, Haon M, Taussac S, Lechat C, Courtecuisse R, Favel A, Coutinho PM, Lesage-Meessen L (2012) Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl Environ Microbiol 78(18):6483–6490. doi:10.​1128/​AEM.​01651-12 PubMed PubMedCentral CrossRef
    Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145. doi:10.​1146/​annurev-chembioeng-061010-114205 PubMed CrossRef
    Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin JG (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77:237–246. doi:10.​1128/​AEM.​01761-10 PubMed PubMedCentral CrossRef
    Couturier M, Navarro D, Olivé C, Chevret D, Haon M, Favel A, Lesage-Meessen L, Henrissat B, Coutinho PM, Berrin JG (2012) Post-genomic analyses of fungal lignocellulosic biomass degradation reveal the unexpected potential of the plant pathogen Ustilago maydis. BMC Genomics 13:57. doi:10.​1186/​1471-2164-13-57 PubMed PubMedCentral CrossRef
    Daniel G, Volc J, Kubatova E (1994) Pyranose oxidase, a major source of H(2)O(2) during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol 60(7):2524–2532PubMed PubMedCentral
    Ferreira P, Hernandez-Ortega A, Herguedas B, Martinez AT, Medina M (2009) Aryl-alcohol oxidase involved in lignin degradation—a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates. J Biol Chem 284:24840–24847. doi:10.​1074/​jbc.​M109.​011593 PubMed PubMedCentral CrossRef
    Ferreira P, Ruiz-Dueñas FJ, Martínez MJ, van Berkel WJ, Martínez AT (2006) Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme. Febs j 273(21):4878–4888. doi:10.​1111/​j.​1742-4658.​2006.​05488.​x PubMed CrossRef
    Ferreira P, Medina M, Guillén F, Martinez MJ, Van Berkel WJ, Martinez AT (2005) Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochem J 389:731–738. doi:10.​1042/​BJ20041903 PubMed PubMedCentral CrossRef
    Foust TD, Ibsen KN, Dayton DC, Hess JR, Kenney KE (2008) The biorefinery. In: Himmel ME (ed) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy, 1st edn. Blackwell Publishing Ltd, Oxford, UK, pp. 7–37CrossRef
    Gibson DM, King BC, Hayes ML, Bergstrom GC (2011) Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Curr Opin Microbiol 14(3):264–270. doi:10.​1016/​j.​mib.​2011.​04.​002 PubMed CrossRef
    Guillén F, Martinez AT, Martínez MJ (1990) Production of hydrogen peroxide by aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Appl Microbiol Biotechnol 32(4):465–469. doi:10.​1111/​j.​1432-1033.​1992.​tb17326.​x CrossRef
    Guillén F, Martinez AT, Martinez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. J Biochem 209(2):603–611. doi:10.​1111/​j.​1432-1033.​1992.​tb17326.​x
    Hernandez-Ortega A, Ferreira P, Martinez AT (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93:1395–1410. doi:10.​1007/​s00253-011-3836-8 PubMed CrossRef
    Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Müller O, Perlin MH, Wösten HA, de Vries R, Ruiz-Herrera J, Reynaga-Peña CG, Snetselaar K, McCann M, Pérez-Martín J, Feldbrügge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, González-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Münch K, Rössel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho EC, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Häuser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schlüter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Güldener U, Münsterkötter M, Haase D, Oesterheld M, Mewes HW, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101PubMed CrossRef
    Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169(5):2195–2201PubMed PubMedCentral
    King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 16(4):4. doi:10.​1186/​1754-6834-4-4 CrossRef
    Leitner C, Volc J, Haltrich D (2001) Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor. Appl Environ Microbiol 67(8):3636–3644. doi:10.​1128/​AEM.​67.​8.​3636-3644 PubMed PubMedCentral CrossRef
    Leuthner B, Aichinger C, Oehmen E, Koopmann E, Müller O, Müller P, Kahmann R, Bölker M, Schreier PH (2005) A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol Gen Genomics 272(6):639–650. doi:10.​1007/​s00438-004-1085-6 CrossRef
    Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6(1):41. doi:10.​1186/​1754-6834-6-41 PubMed PubMedCentral CrossRef
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. doi:10.​1093/​nar/​gkt1178 PubMed PubMedCentral CrossRef
    Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol 50(1):5–20. doi:10.​1002/​jobm.​200900338 PubMed CrossRef
    Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560. doi:10.​1038/​nbt1403 PubMed CrossRef
    Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavín JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106(6):1954–1959. doi:10.​1073/​pnas.​0809575106 PubMed PubMedCentral CrossRef
    Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP (2008) The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol 45(Suppl 1):S63–S70. doi:10.​1016/​j.​fgb.​2008.​03.​012 PubMed CrossRef
    Okamoto K, Yanase H (2002) Aryl alcohol oxidases from the white-rot basidiomycete Pleurotus ostreatus. Mycoscience 43:391–395. doi:10.​1007/​S102670200057 CrossRef
    Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30—thirty years of strain improvement. Microbiology 158:58–68. doi:10.​1099/​mic.​0.​054031-0 PubMed CrossRef
    Ravalason H, Grisel S, Chevret D, Favel A, Berrin JG, Sigoillot JC, Herpoël-Gimbert I (2012) Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw. Bioresour Technol 114:589–596. doi:10.​1016/​j.​biortech.​2012.​03.​009 PubMed CrossRef
    Romero E, Ferreira P, Martínez AT, Martínez MJ (2009) New oxidase from Bjerkandera arthroconidial anamorph that oxidizes both phenolic and nonphenolic benzyl alcohols. BBA - Proteins Proteom 1794(4):689–697. doi:10.​1016/​j.​bbapap.​2008.​11.​013 CrossRef
    Siguier B, Haon M, Nahoum V, Marcellin M, Burlet-Schiltz O, Coutinho PM, Henrissat B, Mourey L, O’Donohue MJ, Berrin JG, Tranier S, Dumon C (2014) First structural insights into α-L-arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies. J Biol Chem 289(8):5261–5273. doi:10.​1074/​jbc.​M113.​528133 PubMed PubMedCentral CrossRef
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.​1093/​molbev/​mst197 PubMed PubMedCentral CrossRef
    Varela E, Böckle B, Romero A, Martínez AT, Martínez MJ (2000) Biochemical characterization, cDNA cloning and protein crystallization of aryl-alcohol oxidase from Pleurotus pulmonarius. Biochim Biophys Acta 1476(1):129–138. doi:10.​1016/​S0167-4838(99)00227-7 PubMed CrossRef
    Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(1):40. doi:10.​1186/​1471-2105-9-40 PubMed PubMedCentral CrossRef
    Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp. 97–166
  • 作者单位:Marie Couturier (1) (2)
    Yann Mathieu (1) (2)
    Ai Li (3)
    David Navarro (1) (2)
    Elodie Drula (1) (2) (4) (5)
    Mireille Haon (1) (2)
    Sacha Grisel (1) (2)
    Roland Ludwig (3)
    Jean-Guy Berrin (1) (2) (6)

    1. INRA, UMR1163 BBF, Polytech’Marseille, F-13288, Marseille, France
    2. Marseille Université, UMR1163 BBF, Polytech’Marseille, F-13288, Marseille, France
    3. Department of Food Science and Technology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
    4. CNRS, UMR7257 Architecture et Fonction des Macromolécules Biologiques, F-13288, Marseille, France
    5. INRA, USC1408 Architecture et Fonction des Macromolécules Biologiques, F-13288, Marseille, France
    6. INRA, Laboratoire de Biodiversité et Biotechnologie Fongique, Marseille, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
The discovery of novel fungal lignocellulolytic enzymes is essential to improve the breakdown of plant biomass for the production of second-generation biofuels or biobased materials in green biorefineries. We previously reported that Ustilago maydis grown on maize secreted a diverse set of lignocellulose-acting enzymes including hemicellulases and putative oxidoreductases. One of the most abundant proteins of the secretome was a putative glucose-methanol-choline (GMC) oxidoreductase. The phylogenetic prediction of its function was hampered by the few characterized members within its clade. Therefore, we cloned the gene and produced the recombinant protein to high yield in Pichia pastoris. Functional screening using a library of substrates revealed that this enzyme was able to oxidize several aromatic alcohols. Of the tested aryl-alcohols, the highest oxidation rate was obtained with 4-anisyl alcohol. Oxygen, 1,4-benzoquinone, and 2,6-dichloroindophenol can serve as electron acceptors. This GMC oxidoreductase displays the characteristics of an aryl-alcohol oxidase (E.C.1.1.3.7), which is suggested to act on the lignin fraction in biomass. Keywords Aryl-alcohol oxidase Ustilago maydis CAZy AA3 Lignin Biorefinery

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700