用户名: 密码: 验证码:
Reconstructing subduction polarity through the geochemistry of mafic rocks in a Cambrian magmatic arc along the Gondwana margin (Órdenes Complex, NW Iberian Massif)
详细信息    查看全文
  • 作者:P. Andonaegui ; S. Sánchez-Martínez…
  • 关键词:Peri ; Gondwanan Cambrian arc ; Subduction polarity ; Gabbronorites ; Sr and Sm–Nd isotopic geochemistry ; Órdenes Complex ; NW Iberia
  • 刊名:International Journal of Earth Sciences
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:105
  • 期:3
  • 页码:713-725
  • 全文大小:1,760 KB
  • 参考文献:Abati J, Dunning GR, Arenas R, Díaz García F, González Cuadra P, Martínez- Catalán JR, Andonaegui P (1999) Early Ordovician orogenic event in Galicia (NW Spain): evidence from U–Pb ages in the uppermost unit or the Órdenes Complex. Earth Planet Sci Lett 165:213–228CrossRef
    Abati J, Arenas R, Martínez-Catalán JR, Díaz-García F (2003) Anticlockwise P–T path of granulites from the Monte Castelo gabbro (Órdenes complex, NW Spain). J Petrol 44:305–327CrossRef
    Abati J, Castiñeiras P, Arenas R, Fernández-Suárez J, Gómez-Barreiro J (2007) Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Paleozoic arc of NW Iberia revisited. Terra Nova 19:432–439CrossRef
    Abati J, Gerdes A, Fernández-Suárez J, Arenas R, Whitehouse MJ, Díez- Fernández R (2010) Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. Geol Soc Am Bull 122:219–235CrossRef
    Andonaegui P, del Tánago JG, Arenas R, Abati J, Martínez-Catalán JR, Peinado M, Díaz-García F (2002) Tectonic setting of the Monte Castelo gabbro (Órdenes Complex, northwestern Iberian Massif). Evidence for an arc-related terrane in the hanging wall to the Variscan suture. In: Martínez-Catalán JR, Hatcher RD Jr, Arenas R, Díaz-García F (eds) Variscan-Appalachian dynamics: the building of the Paleozoic basement. Boulder Colorado, Geol Soc Am Special Paper, vol 364, pp 37–56
    Andonaegui P, Castiñeiras P, González-Cuadra P, Arenas R, Sánchez- Martínez S, Díaz-García F, Martínez-Catalán JR (2012) The Corredoiras orthogneiss (NW Iberian Massif): geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. Lithos 128–131:84–99. doi:10.​1016/​j.​lithos2011.​11.​005 CrossRef
    Arenas R, Rubio Pascual FJ, Díaz García F, Martínez Catalán JR (1995) High-pressure microinclusions and development of an inverted metamorphic gradient in the Santiago Schiste (Órdenes Complex, NW IIberian Massif, Spain): evidence of subduction and syncollisional decompression. J Metamorph Geol 13:141–164CrossRef
    Arenas R, Díez-Fernández R, Sánchez-Martínez S, Gerdes A, Fernández-Suárez J, Albert R (2014) Two-stage collision: exploring the birth of Pangea in the Variscan terranes. Gondwana Res 25–2:756–763CrossRef
    Castiñeiras P, Díaz-García F, Gómez Barreiro J (2010) REE-assisted U–Pb zircon age (SHRIMP) of an anatectic granodiorite: constraints on the evolution of the A Silva granodiorite, Iberian allochtonous complexes. Lithos 116:153–166CrossRef
    De Paolo DJ (1981) Neodymiun isotopes in the Colorado Front range and crust-mantle evolution in the Proterozoic. Nature 291:193–196CrossRef
    Díaz-García F, Arenas R, Martínez Catalán JR, González del Tánago J, Dunning GR (1999) Tectonic evolution of the Careón Ophiolite (Northwest Spain): a remnant of oceanic lithosphere in the Variscan belt. J Geol 107:587–605CrossRef
    Díaz-García F, Sánchez-Martínez S, Castiñeiras P, Fuenlabrada JM, Arenas R (2010) A peri-Gondwanan arc in NW Iberia II: assessment of the intra-arc tectonothermal evolution through U–Pb SHRIMP dating of mafic dykes. Gondwana Res 17:352–362CrossRef
    Díez Fernández R, Castiñeiras P, Gómez Barreiro J (2012) Age constraints on Lower Paleozoic convection system: magmatic events in the NW Iberian Gondwana margin. Gondwana Res 21:1066–1079CrossRef
    Fernández-Suárez J, Díaz García F, Jeffries TE, Arenas R, Abati J (2003) Constraints on the provenance of the uppermost allochthonous terrane of the NW Iberian Massif: inferences from detrital zircon U–Pb ages. Terra Nova 15:138–144CrossRef
    Fernández-Suárez J, Arenas R, Abati J, Martínez-Catalán JR, Whitehouse MJ, Jeffries TE (2007) U–Pb chronometry of polymetamorphic high-pressure granulites: an example from the allochtonous terranes of NW Iberian Variscan belt. In: Hatcher RD Jr, Carlson MP, McBride JH, Martínez-Catalán JR (eds) 4-D framework of continental crust. Geol Soc Am Memoir, vol 200, pp 469–488
    Fuenlabrada JM, Arenas R, Sánchez-Martínez S, Díaz García F, Castiñeiras P (2010) A peri-Gondwanan arc in NW Iberia I: isotopic and geochemical constraints on the origin of the arc—a sedimentary approach. Gondwana Res 17:338–351CrossRef
    Gómez-Barreiro J, Martínez-Catalán JR, Arenas R, Castiñeiras P, Abati J, Díaz-García F, Wijbrans JR (2007) Tectonic evolution of the upper allochthon of the Órdenes complex (northwestern Iberian Massif): structural constraints to a polyorogenic peri-Gondwanan terrane. In: Linneman U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian Cadomian active margin to Alleghenian–Variscan collision. Geological 554 Soc Am Special Paper, vol 423, pp 315–332
    Gómez-Barreiro J, Martínez-Catalán JR, Prior D, Wenk HR, Vogel S, Díaz- García F, Arenas R, Sánchez-Martínez S, Lonardelli I (2010) Fabric development in a middle devonian intraoceanic subduction regime: the Careón ophiolite (Northwest Spain). J Geol 118:163–186CrossRef
    Hastie AR, Kerr AC, Pearce JA, Mitchell SF (2007) Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. J Petrol 48–12:2341–2357CrossRef
    Hawkesworth C, Turner S, Peate D, McDermott F, Van Calsteren P (1997) Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chem Geol 139:207–221CrossRef
    Hochstaedter AG, Gill JB, Taylor B, Ishizuka O, Yuasa M, Morita S (2000) Across-arc geochemical trends in the Izu-Bonin arc: constraints on source composition and mantle melting. J Geophys Res 105(B1):495–512CrossRef
    John T, Scherer EE, Haase K, Schenk V (2004) Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu–Hf–Sm–Nd isotope systematics. Earth Planet Sci Lette 227:441–456CrossRef
    Lugmair GW, Scheinin NB, Marti K (1975) Sm–Nd age and history of Apollo 17 basalt 75075: evidence for early differentiation of the lunar exterior. In: Sixth lunar science conference proceedings, pp 1419–1429
    Martínez-Catalán JR, Arenas R, Díaz-García F, Rubio Pascual FJ, Abati J, Marquínez J (1996) Variscan exhumation of a subducted Paleozoic continental margin: the basal units of the Órdenes Complex, Galicia, NW Spain. Tectonics 15:106–121CrossRef
    Martínez-Catalán JR, Arenas R, Díaz-García F, González-Cuadra P, Gómez-Barreiro J, Abati J, Castiñeiras P, Fernández-Suárez J, Sánchez-Martínez S, Andonaegui P, González-Clavijo E, Díez-Montes A, Rubio-Pascual FJ, Valle Aguado B (2007) Space and time in the tectonic evolution of the northwestern Iberian Massif: implications for the Variscan belt. In: Hatcher RD Jr, Carlson MP, McBride JH, Martínez-Catalán JR (eds) 4-D framework of continental crust. Geol Soc Am Memoir, vol 200, pp 403–423
    Martínez-Catalán JR, Arenas R, Abati J, Sánchez-Martínez S, Díaz-García F, Fernández-Suárez J, González-Cuadra P, Castiñeiras P, Gómez-Barreiro J, Díez-Montes A, González-Clavijo E, Rubio-Pascual FJ, Andonaegui P, Jeffries TE, Alcock JE, Díez-Fernández R, López-Carmona A (2009) A rootless suture and the loss of the roots of a mountain chain: the Variscan belt of NW Iberia. C. R. Geosci 341:114–126CrossRef
    Matte Ph (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 196:309–337CrossRef
    Münker C, Wörner G, Yogodzinski G, Churikova T (2004) Behaviour of high field strength elements in subduction zones: constraints from Kamchatka–Aleutian arc lavas. Earth Planet Sci Lett 224:275–293CrossRef
    Murphy JB, Gutiérrez-Alonso G (2008) The origin of the Variscan upper allocthons in the Ortegal Complex, northwestern Iberia: Sm–Nd isotopic constraints on the closure of the Rheic Ocean. Can J Earth Sci 4:651–668
    Offler R, Murray C (2011) Devonian volcanics in the New England Orogen: tectonic setting and polarity. Gondwana Res 19:706–715CrossRef
    Patino LC, Carr MJ, Feigenson MD (1997) Cross-arc geochemical variations in volcanic fields in Honduras C.A.: progressive changes in source with distance from the volcanic front. Contrib Miner Petrol 129:341–351CrossRef
    Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkeswoth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Nantwich, pp 230–249
    Pearce JA (1996) A users guide to basalt discrimination diagrams. In: Wyman DA (ed) Trace element geochemistry of volcanics rocks: applications for massive sulphide exploration. Geological Association of Canada, Short Course Notes, vol 12, pp 79–113
    Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48CrossRef
    Plank T (2005) Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution f the continents. J Petrol 46:921–944CrossRef
    Premo WR, Loucks RR (2000) Age and Pb-Sr-Nd isotopic systematics of plutonic rocks from the Green Mountain magmatic arc, southeastern Wyoming: isotopic characterization of a Paleoproterozoic island arc system. Rocky Mt Geol 35:51–70CrossRef
    Sánchez-Martínez S, Arenas R, Díaz-García F, Martínez-Catalán JR, Gómez-Barreiro J, Pearce J (2007) The Careón Ophiolite, NW Spain: supra- subduction zone setting for the youngest Rheic Ocean floor. Geology 35:53–56CrossRef
    Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33CrossRef
    Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society of London, Special Publication, vol 42, pp 313–345
    Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell Science, Boston
    Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRef
    Winchester JA, Pharaoh TC, Verniers J (2002) Palaeozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geol Soc of London, Special Publication, vol 201, pp 1–18
  • 作者单位:P. Andonaegui (1)
    S. Sánchez-Martínez (1) (2)
    P. Castiñeiras (1)
    J. Abati (1) (2)
    R. Arenas (1) (2)

    1. Dpto. Petrología y Geoquímica (UCM), Universidad Complutense de Madrid, 28040, Madrid, Spain
    2. Instituto de Geociencias (UCM, IGEO), Universidad Complutense de Madrid, 28040, Madrid, Spain
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geology
    Geophysics and Geodesy
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1437-3262
文摘
In the allochthonous complexes of the NW Iberian Massif, the Upper Units have been interpreted as a section of a peri-Gondwanan magmatic arc active from Middle Cambrian to Early Ordovician times. The main plutonic bodies intruding the arc metasediments are the Monte Castelo gabbronorites and the Corredoiras orthogneisses, which include minor metagabbronorite bodies, both dated at ca 500 Ma. The geochemical features of Monte Castelo metagabbronorites indicate a tholeiitic affinity, with negative Nb anomaly; its 143Nd/144Nd ratios are high (0.5143119–0.513019), whereas initial 87Sr/86Sr ratios are low (0.702562–0.703174), with positive εNdi values (+7.8 to +5.4). The geochemistry of Corredoiras metagabbronorites indicates a calc-alkaline affinity, also with negative Nb anomaly, low 143Nd/144Nd (0.512575–0.512436) and high initial 87Sr/86Sr (0.705082–0.706684), εNdi values ranging between −0.65 and +1.83. In the εNd versus age diagram, Monte Castelo samples show compositions equivalent to the contemporaneous depleted mantle. Corredoiras metagabbros have much lower εNdi values compared with Monte Castelo samples, with older model ages ranging between 1165 and 1291 Ma, suggesting contamination of the original mafic mantle-derived magmas with an older continental crust. These geochemical features can be linked to the setting of a mature volcanic arc, in which Monte Castelo metagabbros were located close to the trench, while Corredoiras metagabbros would be in a relatively distant position from the trench, thus indicating subduction polarity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700