用户名: 密码: 验证码:
Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga
详细信息    查看全文
  • 作者:Si Amar Dahoumane ; Claude Yéprémian ; Chakib Djédiat…
  • 关键词:Biotechnology ; Euglena gracilis ; Gold nanoparticles ; Biosynthesis ; Colloidal stability ; Kinetics ; Yield
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:3
  • 全文大小:1,937 KB
  • 参考文献:Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277. doi:10.​1016/​j.​matlet.​2013.​11.​038 CrossRef
    Barwal I, Ranjan P, Kateriya S, Yadav SC (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol 9:56. doi:10.​1186/​1477-3155-9-56 CrossRef
    Brayner R et al (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7:2696–2708. doi:10.​1166/​jnn.​2007.​600 CrossRef
    Brayner R et al (2009) Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods. Langmuir 25:10062–10067. doi:10.​1021/​la9010345 CrossRef
    Brayner R et al (2012) Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloid Surf B 93:20–23. doi:10.​1016/​j.​colsurfb.​2011.​10.​014 CrossRef
    Castro L, Blazquez ML, Munoz JA, Gonzalez F, Ballester A (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7:109–116. doi:10.​1049/​iet-nbt.​2012.​0041 CrossRef
    Castro L, Blázquez ML, Muñoz JA, González F, Ballester A (2014) Mechanism and applications of metal nanoparticles prepared by bio-mediated process. Rev Adv Sci Eng 3:199–216. doi:10.​1166/​rase.​2014.​1064 CrossRef
    Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon. J Appl Phycol 21:145–152. doi:10.​1007/​s10811-008-9343-3 CrossRef
    Dahoumane SA, Djédiat C, Yeprémian C, Couté A, Fiévet F, Brayner R (2010) Design of magnetic akaganeite-cyanobacteria hybrid biofilms. Thin Solid Films 518:5432–5436. doi:10.​1016/​j.​tsf.​2010.​04.​001 CrossRef
    Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012a) Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanopart Res 14:883. doi:10.​1007/​s11051-012-0883-8 CrossRef
    Dahoumane SA, Djédiat C, Yeprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012b) Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng 109:284–288. doi:10.​1002/​bit.​23276 CrossRef
    Dahoumane SA, Wijesekera K, Filipe CD, Brennan JD (2014a) Stoichiometrically controlled production of bimetallic gold-silver alloy colloids using micro-alga cultures. J Colloid Interface Sci 416:67–72. doi:10.​1016/​j.​jcis.​2013.​10.​048 CrossRef
    Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2014b) A Global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res 16:2607. doi:10.​1007/​s11051-014-2607-8 CrossRef
    Feurtet-Mazel A, Mornet S, Charron L, Mesmer-Dudons N, Maury-Brachet R, Baudrimont M (2015) Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima, a species developed in river biofilms. Environ Sci Pollut Res. doi:10.​1007/​s11356-015-4139-x
    Focsan M, Ardelean II, Craciun C, Astilean S (2011) Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803. Nanotechnology. doi:10.​1088/​0957-4484/​22/​48/​485101
    Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122. doi:10.​1007/​s10853-008-2745-4 CrossRef
    Govindaraju K, Kiruthiga V, Kumar VG, Singaravelu G (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum Wightii Grevilli and their antibacterial effects. J Nanosci Nanotechnol 9:5497–5501. doi:10.​1166/​jnn.​2009.​1199 CrossRef
    Halvorson Lahr R, Vikesland PJ (2014) Surface-enhanced Raman spectroscopy (SERS) cellular imaging of intracellulary biosynthesized gold nanoparticles. ACS Sustain Chem Eng 2:1599–1608. doi:10.​1021/​sc500105n CrossRef
    Jeffryes C, Agathos SN, Rorrer G (2015) Biogenic nanomaterials from photosynthetic microorganisms. Curr Opin Biotechnol 33:23–31. doi:10.​1016/​j.​copbio.​2014.​10.​005 CrossRef
    Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK (2014) Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol 24:522–533. doi:10.​4014/​jmb.​1306.​06014 CrossRef
    Kaduková J, Velgosová O, Mražíková A, Marcinčáková R (2014) The effect of culture age and initial silver concentration on biosynthesis of Ag nanoparticles. Nova Biotechnol Chim 13:28–37. doi:10.​2478/​nbec-2014-0004
    Kannan RRR, Arumugam R, Ramya D, Manivannan K, Anantharaman P (2013a) Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci 3:229–233. doi:10.​1007/​s13204-012-0125-5 CrossRef
    Kannan RRR, Stirk WA, Van Staden J (2013b) Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S Afr J Bot 86:1–4. doi:10.​1016/​j.​sajb.​2013.​01.​003 CrossRef
    Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trend Biotechnol 19:15–20. doi:10.​1016/​S0167-7799(00)01514-6 CrossRef
    Kumar P, Senthamil Selvi S, Govindaraju M (2012a) Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl Nanosci 3:495–500. doi:10.​1007/​s13204-012-0151-3 CrossRef
    Kumar P, Senthamil Selvi S, Lakshmi Prabha A, Prem Kumar K, Ganeshkumar S, Govindaraju M (2012b) Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its anti-bacterial activity. Nano Biomed Eng 4:12–16. doi:10.​5101/​nbe.​v4i1.​p12-16 CrossRef
    Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K (2013) Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloid Surf B 103:658–661. doi:10.​1016/​j.​colsurfb.​2012.​11.​022 CrossRef
    Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787. doi:10.​1021/​la052652c CrossRef
    Lengke MF, Fleet ME, Southam G (2006b) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum(IV)-chloride complex. Langmuir 22:7318–7323. doi:10.​1021/​la060873s CrossRef
    Lengke MF, Fleet ME, Southam G (2007a) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 23:2694–2699. doi:10.​1021/​la0613124 CrossRef
    Lengke MF, Fleet ME, Southam G (2007b) Synthesis of palladium nanoparticles by reaction of filamentous cyanobacterial biomass with a palladium(II) chloride complex. Langmuir 23:8982–8987. doi:10.​1021/​la7012446 CrossRef
    Li Y et al (2015) Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract. IET Nanobiotechnol 9:19–26. doi:10.​1049/​iet-nbt.​2013.​0062 CrossRef
    Liu B, Xie J, Lee JY, Ting YP, Chen JP (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 109:15256–15263. doi:10.​1021/​jp051449n CrossRef
    Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG (2011) Gold nanoparticles produced in a microalga. J Nanopart Res 13:6439–6445. doi:10.​1007/​s11051-011-0397-9 CrossRef
    Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964. doi:10.​3390/​molecules1805595​4 CrossRef
    Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Ira F 19:926–929. doi:10.​1016/​j.​scient.​2012.​01.​010 CrossRef
    Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618. doi:10.​1016/​j.​jhazmat.​2008.​11.​064 CrossRef
    Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D (2011) Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. BioImpacts 1:149–152. doi:10.​5681/​bi.​2011.​020
    Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176:1937–1949. doi:10.​1007/​s12010-015-1690-3 CrossRef
    MubarakAli D, Gopinath V, Rameshbabu N, Thajuddin N (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11. doi:10.​1016/​j.​matlet.​2012.​01.​026 CrossRef
    Nagarajan S, Arumugam Kuppusamy K (2013) Extracellular synthesis of zinc oxide nanoparticles using seaweeds of Gulf of Mannar, India. J Nanobiotechnol 11:39. doi:10.​1186/​1477-3155-11-39 CrossRef
    Ninfa AJ, Ballou DP, Benore M (2010) Fundamental laboratory approches for biochemistry and biotechnology, 2nd edn. Wiley, Hoboken
    Pandimurugan R, Thambidurai S (2014) Seaweed-ZnO composite for better antibacterial properties. J Appl Polym Sci 131:40948. doi:10.​1002/​app.​40948 CrossRef
    Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:5. doi:10.​4172/​2157-7439.​1000233 CrossRef
    Parial D, Patra HK, Dasgupta AKR, Pal R (2012a) Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol 47:22–29. doi:10.​1080/​09670262.​2011.​653406 CrossRef
    Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012b) Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl Phycol 24:55–60. doi:10.​1007/​s10811-010-9645-0 CrossRef
    Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119. doi:10.​1016/​j.​btre.​2014.​12.​001 CrossRef
    Rahman A, Ismail A, Jumbianti D, Magdalena S, Sudrajat H (2009) Synthesis of copper oxide nano particles by using Phormidium Cyanobacterium. Indo J Chem 9:355–360
    Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3:44. doi:10.​1186/​2193-8865-3-44 CrossRef
    Rösken LM, Körsten S, Fischer CB, Schönleber A, van Smaalen S, Geimer S, Wehner S (2014) Time-dependent growth of crystalline Au-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1. Anabaena sp. J Nanopart Res 16:2370. doi:10.​1007/​s11051-014-2370-x CrossRef
    Satapathy S, Shukla SP, Sandeep KP, Singh AR, Sharma N (2014) Evaluation of the performance of an algal bioreactor for silver nanoparticle production. J Appl Phycol 27:285–291. doi:10.​1007/​s10811-014-0311-9 CrossRef
    Schröfel A, Kratošová G, Bohunická M, Dobročka E, Vávra I (2011) Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. J Nanopart Res 13:3207–3216. doi:10.​1007/​s11051-011-0221-6 CrossRef
    Senapati S, Syed A, Moeez S, Kumar A, Ahmad A (2012) Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 79:116–118. doi:10.​1016/​j.​matlet.​2012.​04.​009 CrossRef
    Sharma B, Purkayastha DD, Hazra S, Gogoi L, Bhattacharjee CR, Ghosh NN, Rout J (2014) Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Mater Lett 116:94–97. doi:10.​1016/​j.​matlet.​2013.​10.​107 CrossRef
    Stein JR (1973) Handbook of phycological methods. Culture methods and growth measurements. Cambridge University Press, Cambridge
    Subramaniyam V, Subashchandrabose SR, Thavamani P, Megharaj M, Chen Z, Naidu R (2015) Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27:1861–1869. doi:10.​1007/​s10811-014-0492-2 CrossRef
    Xie J, Lee JY, Wang DIC, Ting YP (2007a) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:672–682. doi:10.​1002/​smll.​200600612 CrossRef
    Xie J, Lee JY, Wang DIC, Ting YP (2007b) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439. doi:10.​1021/​nn7000883 CrossRef
    Yin X, Chen S, Wu A (2010) Green chemistry synthesis of gold nanoparticles using lactic acid as a reducing agent. Micro Nano Lett 5:270–273. doi:10.​1049/​mnl.​2010.​0117 CrossRef
  • 作者单位:Si Amar Dahoumane (1) (2)
    Claude Yéprémian (3)
    Chakib Djédiat (3)
    Alain Couté (3)
    Fernand Fiévet (1)
    Thibaud Coradin (4)
    Roberta Brayner (1)

    1. Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS, Paris-Diderot University, 15 rue Jean de Baïf, 75205, Paris Cedex 13, France
    2. School of Life Sciences and Biotechnology, Hacienda San José, Yachay Tech University, San Miguel de Urcuquí, Ecuador
    3. Département RDDM, UMR 7245, Unité MCAM, Muséum National d’Histoire Naturelle, 57 rue Cuvier, case 39, 57 rue Cuvier, 75005, Paris, France
    4. UPMC—Paris 06, CNRS, Chimie de la Matière Condensée de Paris, Collège de France, 11 place Marcellin Berthelot, 75005, Paris, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7–8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700