用户名: 密码: 验证码:
Ferrites boosting photocatalytic hydrogen evolution over graphitic carbon nitride: a case study of (Co, Ni)Fe2O4 modification
详细信息    查看全文
  • 作者:Jie Chen ; Daming Zhao ; Zhidan Diao ; Miao Wang ; Shaohua Shen
  • 关键词:Graphitic carbon nitride ; Ferrites ; Photocatalytic water splitting ; Solar hydrogen conversion
  • 刊名:Chinese Science Bulletin
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:61
  • 期:4
  • 页码:292-301
  • 全文大小:3,067 KB
  • 参考文献:1.Fujishima A, Honda K (1972) Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 238:37–38CrossRef
    2.Chen XB, Shen SH, Guo LJ et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570CrossRef
    3.Yue D, Qian X, Zhao Y (2015) Photocatalytic remediation of ionic pollutant. Sci Bull 60:1791–1806CrossRef
    4.Xia Z, Zhou X, Li J et al (2015) Protection strategy for improved catalytic stability of silicon photoanodes for water oxidation. Sci Bull 60:1395–1402CrossRef
    5.Wang XC, Maeda K, Thomas A et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRef
    6.Zhang GG, Zhang MW, Ye XX et al (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26:805–809CrossRef
    7.Liu J, Wang HQ, Chen ZP et al (2015) Microcontact printing assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv Mater 27:712–718CrossRef
    8.Chen J, Shen SH, Guo PH et al (2014) Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation. J Mater Chem A 2:4605–4612CrossRef
    9.Xu L, Huang WQ, Wang LL et al (2015) Insights into enhanced visible-Light photocatalytic hydrogen evolution of g-C3N4 and highly reduced graphene oxide composite: the role of oxygen. Chem Mater 27:1612–1621CrossRef
    10.Ma XG, Lv YH, Xu J et al (2012) A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. J Phys Chem C 116:23485–23493CrossRef
    11.Liu G, Niu P, Sun CH et al (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648CrossRef
    12.Chen J, Shen SH, Guo PH et al (2014) In-situ reduction synthesis of nano-sized Cu2O particles modifying g-C3N4 for enhanced photocatalytic hydrogen production. Appl Catal B Environ 152–153:335–341CrossRef
    13.Chen J, Shen SH, Wu P et al (2015) Nitrogen-doped CeO x nanoparticles modified graphitic carbon nitride for enhanced photocatalytic hydrogen production. Green Chem 17:509–517CrossRef
    14.Yan HJ, Yang HX (2011) TiO2/g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloy Compd 509:26–29CrossRef
    15.Zhu YP, Li M, Liu YL et al (2014) Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. J Phys Chem C 118:10963–10971CrossRef
    16.Wang YJ, Shi R, Lin J et al (2011) Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci 4:2922–2929CrossRef
    17.Zhou XS, Jin B, Li LD et al (2012) A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties. J Mater Chem 22:17900–17905CrossRef
    18.Yan SC, Lv SB, Li ZS et al (2010) Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491CrossRef
    19.Hu S, Xiang CX, Haussener S et al (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:2984–2993CrossRef
    20.Zhang K, Kim WJ, Ma M et al (2015) Tuning the charge transfer route by p-n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution. J Mater Chem A 3:4803–4810CrossRef
    21.Wang XC, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606CrossRef
    22.Maeda K, Wang XC, Nishihara Y et al (2009) Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J Phys Chem C 113:4940–4947CrossRef
    23.Hou YD, Laursen AB, Zhang JS et al (2013) Layered nanojunctions for hydrogen evolution catalysis. Angew Chem Int Ed 52:3621–3625CrossRef
    24.Li M, Xiong YP, Liu T et al (2015) Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 7:8920–8930CrossRef
    25.Shi YQ, Zhou KQ, Wang BB et al (2014) Ternary graphene-CoFe2O4/CdS nanohybrids: preparation and application as recyclable photocatalysts. J Mater Chem A 2:535–544CrossRef
    26.Sathishkumar P, Mangalaraj RV, Anandan S et al (2013) CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chem Eng J 220:302–310CrossRef
    27.Xu SH, Feng DL, Li DX et al (2008) Preparation of magnetic photocatalyst TiO2 supported on NiFe2O4 and effect of magnetic carrier on photocatalytic activity. Chin J Chem 26:842–846CrossRef
    28.Hong DC, Yamada Y, Sheehan M et al (2014) Mesoporous nickel ferrites with spinel structure prepared by an aerosol spray pyrolysis method for photocatalytic hydrogen evolution. ACS Sustain Chem Eng 2:2588–2594CrossRef
    29.Al-Hoshan MS, Singh JP, Al-Mayouf AM et al (2012) Synthesis, physicochemical and electrochemical properties of nickel ferrite spinels obtained by hydrothermal method for the oxygen evolution reaction (OER). Int J Electrochem Sci 7:4959–4973
    30.Liu SS, Bian WY, Yang ZR et al (2014) A facile synthesis of CoFe2O4/biocarbon nanocomposites as efficient bi-functional electrocatalysts for the oxygen reduction and oxygen evolution reaction. J Mater Chem A 2:18012–18017CrossRef
    31.Xu YJ, Bian WY, Wu J et al (2015) Preparation and electrocatalytic activity of 3D hierarchical porous spinel CoFe2O4 hollow nanospheres as efficient catalyst for oxygen reduction reaction and oxygen evolution reaction. Electrochim Acta 151:276–283CrossRef
    32.Cannas C, Falqui A, Musinu A et al (2006) CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: synthesis, structure and magnetic properties. J Nanopart Res 8:255–267CrossRef
    33.Zhu B, Yang CT, Xie QT et al (2013) Influence of rapid thermal annealing on the structure and magnetic properties of CoFe2O4 films prepared by sol-gel method. Ferroelectrics 445:18–25CrossRef
    34.Montemayor SM, Garcia-Cerda LA, Torres-Lubian JR et al (2007) Comparative study of the synthesis of CoFe2O4 and NiFe2O4 in silica through the polymerized complex route of the sol-gel method. J Sol Gel Sci Technol 42:181–186CrossRef
    35.Azadmanjiri J, Seyyed SAS (2004) Influence of stoichiometry and calcination condition on the microstructure and phase constitution of NiFe2O4 powders prepared by sol-gel autocombustion method. Phys Stat Sol 12:3414–3417CrossRef
    36.Li YB, Zhang HM, Liu PR et al (2013) Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small 9:3336–3344
    37.Sun JW, Fu YS, Xiong P et al (2013) A magnetically separable P25/CoFe2O4/graphene catalyst with enhanced adsorption capacity and visible-light-driven photocatalytic activity. RSC Adv 3:22490–22497CrossRef
    38.Zhang JL, Fu JC, Tan GG et al (2012) Nanoscale characterization and magnetic reversal mechanism investigation of electrospun NiFe2O4 multi-particle-chain nanofibres. Nanoscale 4:2754–2759CrossRef
    39.Lin XP, Xing JC, Wang WD et al (2007) Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J Phys Chem C 111:18288–18293CrossRef
    40.Holmes MA, Townsend TK, Osterloh FE et al (2012) Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem Commun 48:371–373CrossRef
    41.Choi JJ, Lim YF, Santiago-Berrios MB et al (2009) PbSe nanocrystal excitonic solar cells. Nano Lett 9:3749–3755CrossRef
    42.Yang XG, Du C, Liu R et al (2013) Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: a case study of the hematite/MnO x combination. J Catal 304:86–91CrossRef
    43.Mao S, Wen ZH, Huang TZ et al (2014) High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ Sci 7:609–616CrossRef
    44.Ding Q, Meng F, English CR et al (2014) Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2. J Am Chem Soc 136:8504–8507CrossRef
  • 作者单位:Jie Chen (1)
    Daming Zhao (1)
    Zhidan Diao (1)
    Miao Wang (1)
    Shaohua Shen (1)

    1. International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
  • 刊物主题:Science, general; Life Sciences, general; Physics, general; Chemistry/Food Science, general; Earth Sciences, general; Engineering, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1861-9541
文摘
The charge carrier separation and surface catalytic redox reactions are of primary importance as elementary steps in photocatalytic hydrogen evolution. In this study, both of these two processes in photocatalytic hydrogen evolution over graphitic carbon nitride (g-C3N4) were greatly promoted with the earth-abundant ferrites (Co, Ni)Fe2O4 modification. CoFe2O4 was further demonstrated to be a better modifier for g-C3N4 as compared to NiFe2O4, due to the more efficient charge carrier transfer as well as superior surface oxidative catalytic activity. When together loading CoFe2O4 and reductive hydrogen production electrocatalyst Pt onto g-C3N4, the obtained Pt/g-C3N4/CoFe2O4 photocatalyst achieved visible-light (λ > 420 nm) hydrogen production rate 3.5 times as high as Pt/g-C3N4, with the apparent quantum yield reaching 3.35 % at 420 nm. Keywords Graphitic carbon nitride Ferrites Photocatalytic water splitting Solar hydrogen conversion

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700