用户名: 密码: 验证码:
Human intronic enhancers control distinct sub-domains of Gli3 expression during mouse CNS and limb development
详细信息    查看全文
  • 作者:Amir A Abbasi (1) (2)
    Zissis Paparidis (1)
    Sajid Malik (1) (3)
    Fiona Bangs (4)
    Ansgar Schmidt (5)
    Sabine Koch (5)
    Javier Lopez-Rios (6)
    Karl-Heinz Grzeschik (1)
  • 刊名:BMC Developmental Biology
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:10
  • 期:1
  • 全文大小:3095KB
  • 参考文献:1. Ruiz i Altaba A, Mas C, Stecca B: The Gli code: an information nexus regulating cell fate, stemness and cancer. / Trends Cell Biol 2007, 17:438鈥?7. CrossRef
    2. Radhakrishna U, Bornholdt D, Scott HS, Patel UC, Rossier C, Engel H, Bottani A, Chandal D, Blouin JL, Solanki JV, Grzeschik KH, Antonarakis SE: The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type-A/B; No phenotype prediction from the position of GLI3 mutations. / Am J Hum Genet 1999, 65:645鈥?5. CrossRef
    3. Vortkamp A, Gessler M, Grzeschik KH: GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. / Nature 1991, 352:539鈥?0. CrossRef
    4. Kalff-Suske M, Wild A, Topp J, Wessling M, Jacobsen EM, Bornholdt D, Engel H, Heuer H, Aalfs CM, Ausems MG, Barone R, Herzog A, Heutink P, Homfray T, Gillessen-Kaesbach G, Konig R, Kunze J, Meinecke P, Muller D, Rizzo R, Strenge S, Superti-Furga A, Grzeschik KH: Point mutations throughout the GLI3 gene cause Greig cephalopolysyndactyly syndrome. / Hum Mol Genet 1999, 8:1769鈥?7. CrossRef
    5. Wild A, Kalff-Suske M, Vortkamp A, Bornholdt D, Konig R, Grzeschik KH: Point mutations in human GLI3 cause Greig syndrome. / Hum Mol Genet 1997, 6:1979鈥?4. CrossRef
    6. Kang S, Graham JM Jr, Olney AH, Biesecker LG: GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. / Nat Genet 1997, 15:266鈥?. CrossRef
    7. Radhakrishna U, Wild A, Grzeschik KH, Antonarakis SE: Mutation in GLI3 in postaxial polydactyly type A. / Nat Genet 1997, 17:269鈥?1. CrossRef
    8. Schimmang T, Oda SI, Ruther U: The mouse mutant Polydactyly Nagoya (Pdn) defines a novel allele of the zinc finger gene Gli3. / Mamm Genome 1994, 5:384鈥?. CrossRef
    9. Biesecker LG: What you can learn from one gene: GLI3. / J Med Genet 2006, 43:465鈥?. CrossRef
    10. Ohyama K, Das R, Placzek M: Temporal progression of hypothalamic patterning by a dual action of BMP. / Development 2008, 135:3325鈥?1. CrossRef
    11. Yu T, Fotaki V, Mason JO, Price DJ: Analysis of early ventral telencephalic defects in mice lacking functional Gli3 protein. / J Comp Neurol 2009, 512:613鈥?7. CrossRef
    12. Alvarez-Medina R, Cayuso J, Okubo T, Takada S, Marti E: Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. / Development 2008, 135:237鈥?7. CrossRef
    13. Yu W, McDonnell K, Taketo MM, Bai CB: Wnt signaling determines ventral spinal cord cell fates in a time-dependent manner. / Development 2008, 135:3687鈥?6. CrossRef
    14. Blaess S, Corrales JD, Joyner AL: Sonic hedgehog regulates Gli activator and repressor functions with spatial and temporal precision in the mid/hindbrain region. / Development 2006, 133:1799鈥?09. CrossRef
    15. Blaess S, Stephen D, Joyner AL: Gli3 coordinates three-dimensional patterning and growth of the tectum and cerebellum by integrating Shh and Fgf8 signaling. / Development 2008, 135:2093鈥?03. CrossRef
    16. Okada T, Okumura Y, Motoyama J, Ogawa M: FGF8 signaling patterns the telencephalic midline by regulating putative key factors of midline development. / Dev Biol 2008, 320:92鈥?01. CrossRef
    17. Lupo G, Harris WA, Lewis KE: Mechanisms of ventral patterning in the vertebrate nervous system. / Nat Rev Neurosci 2006, 7:103鈥?4. CrossRef
    18. Hall JM, Hooper JE, Finger TE: Expression of sonic hedgehog, patched, and Gli1 in developing taste papillae of the mouse. / J Comp Neurol 1999, 406:143鈥?5. CrossRef
    19. Robert B, Lallemand Y: Anteroposterior patterning in the limb and digit specification: Contribution of mouse genetics. / Dev Dyn 2006, 235:2337鈥?2. CrossRef
    20. Vokes SA, Ji H, Wong WH, McMahon AP: A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. / Genes Dev 2008, 22:2651鈥?3. CrossRef
    21. Barna M, Pandolfi PP, Niswander L: Gli3 and Plzf cooperate in proximal limb patterning at early stages of limb development. / Nature 2005, 436:277鈥?1. CrossRef
    22. Riobo NA, Manning DR: Pathways of signal transduction employed by vertebrate Hedgehogs. / Biochem J 2007, 403:369鈥?9. CrossRef
    23. Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF, North P, Callaway H, Kelly K, Walter K, Abnizova I, Gilks W, Edwards YJ, Cooke JE, Elgar G: Highly conserved non-coding sequences are associated with vertebrate development. / PLoS Biol 2005, 3:e7. CrossRef
    24. Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD, Plajzer-Frick I, Akiyama J, De Val S, Afzal V, Black BL, Couronne O, Eisen MB, Visel A, Rubin EM: In vivo enhancer analysis of human conserved non-coding sequences. / Nature 2006, 444:499鈥?02. CrossRef
    25. Abbasi AA, Paparidis Z, Malik S, Goode DK, Callaway H, Elgar G, Grzeschik KH: Human GLI3 intragenic conserved non-coding sequences are tissue-specific enhancers. / PLoS ONE 2007, 2:e366. CrossRef
    26. Paparidis Z, Abbasi AA, Malik S, Goode DK, Callaway H, Elgar G, deGraaff E, Lopez-Rios J, Zeller R, Grzeschik KH: Ultraconserved non-coding sequence element controls a subset of spatiotemporal GLI3 expression. / Dev Growth Differ 2007, 49:543鈥?3. CrossRef
    27. Visel A, Minovitsky S, Dubchak I, Pennacchio LA: VISTA Enhancer Browser--a database of tissue-specific human enhancers. / Nucleic Acids Res 2007, 35:D88鈥?2. CrossRef
    28. Abbasi AA, Grzeschik KH: An insight into the phylogenetic history of HOX linked gene families in vertebrates. / BMC Evol Biol 2007, 7:239. CrossRef
    29. Persson M, Stamataki D, te Welscher P, Andersson E, Bose J, Ruther U, Ericson J, Briscoe J: Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. / Genes Dev 2002, 16:2865鈥?8. CrossRef
    30. Niswander L: Pattern formation: old models out on a limb. / Nat Rev Genet 2003, 4:133鈥?3. CrossRef
    31. Hilton MJ, Tu X, Cook J, Hu H, Long F: Ihh controls cartilage development by antagonizing Gli3, but requires additional effectors to regulate osteoblast and vascular development. / Development 2005, 132:4339鈥?1. CrossRef
    32. Koziel L, Wuelling M, Schneider S, Vortkamp A: Gli3 acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. / Development 2005, 132:5249鈥?0. CrossRef
    33. Towers M, Tickle C: Growing models of vertebrate limb development. / Development 2009, 136:179鈥?0. CrossRef
    34. Smith CM, Finger JH, Hayamizu TF, McCright IJ, Eppig JT, Kadin JA, Richardson JE, Ringwald M: The mouse Gene Expression Database (GXD): 2007 update. / Nucleic Acids Res 2007, 35:D618鈥?3. CrossRef
    35. Mo R, Freer AM, Zinyk DL, Crackower MA, Michaud J, Heng HH, Chik KW, Shi XM, Tsui LC, Cheng SH, Joyner AL, Hui C: Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. / Development 1997, 124:113鈥?3.
    36. Sabherwal N, Bangs F, Roth R, Weiss B, Jantz K, Tiecke E, Hinkel GK, Spaich C, Hauffa BP, Kamp H, Kapeller J, Tickle C, Rappold G: Long-range conserved non-coding SHOX sequences regulate expression in developing chicken limb and are associated with short stature phenotypes in human patients. / Hum Mol Genet 2007, 16:210鈥?2. CrossRef
    37. Schweitzer R, Vogan KJ, Tabin CJ: Similar expression and regulation of Gli2 and Gli3 in the chick limb bud. / Mech Dev 2000, 98:171鈥?. CrossRef
    38. Krull CE: A primer on using in ovo electroporation to analyze gene function. / Dev Dyn 2004, 229:433鈥?. CrossRef
    39. Tanaka M, Munsterberg A, Anderson WG, Prescott AR, Hazon N, Tickle C: Fin development in a cartilaginous fish and the origin of vertebrate limbs. / Nature 2002, 416:527鈥?1. CrossRef
    40. Dahn RD, Davis MC, Pappano WN, Shubin NH: Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning. / Nature 2007, 445:311鈥?. CrossRef
    41. Dessaud E, McMahon AP, Briscoe J: Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. / Development 2008, 135:2489鈥?03. CrossRef
    42. Jacob J, Briscoe J: Gli proteins and the control of spinal-cord patterning. / EMBO Rep 2003, 4:761鈥?. CrossRef
    43. Ruiz i Altaba A: Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. / Development 1998, 125:2203鈥?2.
    44. Bai CB, Stephen D, Joyner AL: All mouse ventral spinal cord patterning by hedgehog is gli dependent and involves an activator function of gli3. / Dev Cell 2004, 6:103鈥?5. CrossRef
    45. Oh S, Huang X, Liu J, Litingtung Y, Chiang C: Shh and Gli3 activities are required for timely generation of motor neuron progenitors. / Dev Biol 2009, 331:261鈥?. CrossRef
    46. Nobrega MA, Ovcharenko I, Afzal V, Rubin EM: Scanning human gene deserts for long-range enhancers. / Science 2003, 302:413. CrossRef
    47. Kimura-Yoshida C, Kitajima K, Oda-Ishii I, Tian E, Suzuki M, Yamamoto M, Suzuki T, Kobayashi M, Aizawa S, Matsuo I: Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. / Development 2004, 131:57鈥?1. CrossRef
    48. Carroll SB: Evolution at two levels: on genes and form. / PLoS Biol 2005, 3:e245. CrossRef
    49. Prud'homme B, Gompel N, Carroll SB: Emerging principles of regulatory evolution. / Proc Natl Acad Sci USA 2007,104(Suppl 1):8605鈥?2. CrossRef
    50. Wray GA: The evolutionary significance of cis-regulatory mutations. / Nat Rev Genet 2007, 8:206鈥?6. CrossRef
    51. Simmons AD, Horton S, Abney AL, Johnson JE: Neurogenin2 expression in ventral and dorsal spinal neural tube progenitor cells is regulated by distinct enhancers. / Dev Biol 2001, 229:327鈥?9. CrossRef
    52. Das RM, Van Hateren NJ, Howell GR, Farrell ER, Bangs FK, Porteous VC, Manning EM, McGrew MJ, Ohyama K, Sacco MA, Halley PA, Sang HM, Storey KG, Placzek M, Tickle C, Nair VK, Wilson SA: A robust system for RNA interference in the chicken using a modified microRNA operon. / Dev Biol 2006, 294:554鈥?3. CrossRef
    53. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A: Detection of nonneutral substitution rates on mammalian phylogenies. / Genome Res 20:110鈥?1.
    54. Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D: Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. / Proc Natl Acad Sci USA 2003, 100:11484鈥?. CrossRef
    55. Loots GG, Ovcharenko I: rVISTA 2.0: evolutionary analysis of transcription factor binding sites. / Nucleic Acids Res 2004, 32:W217鈥?1. CrossRef
    56. Mackey AJ, Haystead TA, Pearson WR: Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. / Mol Cell Proteomics 2002, 1:139鈥?7. CrossRef
  • 作者单位:Amir A Abbasi (1) (2)
    Zissis Paparidis (1)
    Sajid Malik (1) (3)
    Fiona Bangs (4)
    Ansgar Schmidt (5)
    Sabine Koch (5)
    Javier Lopez-Rios (6)
    Karl-Heinz Grzeschik (1)

    1. Department of Human Genetics, Philipps-Universit盲t Marburg, 35037, Marburg, Germany
    2. National Center for Bioinformatics, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
    3. Department of Animal Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
    4. Biology and Biochemistry Department, University of Bath, BA2 7AY, Bath, UK
    5. Department of Pathology, Philipps-Universit盲t Marburg, 35033, Marburg, Germany
    6. DBM Center for Biomedicine, University of Basel Medical School, Basel, Switzerland
文摘
Background The zinc-finger transcription factor GLI3 is an important mediator of Sonic hedgehog signaling and crucial for patterning of many aspects of the vertebrate body plan. In vertebrates, the mechanism of SHH signal transduction and its action on target genes by means of activating or repressing forms of GLI3 have been studied most extensively during limb development and the specification of the central nervous system. From these studies it has emerged, that Gli3 expression must be subject to a tight spatiotemporal regulation. However, the genetic mechanisms and the cis-acting elements controlling the expression of Gli3 remained largely unknown. Results Here, we demonstrate in chicken and mouse transgenic embryos that human GLI3-intronic conserved non-coding sequence elements (CNEs) autonomously control individual aspects of Gli3 expression. Their combined action shows many aspects of a Gli3-specific pattern of transcriptional activity. In the mouse limb bud, different CNEs enhance Gli3-specific expression in evolutionary ancient stylopod and zeugopod versus modern skeletal structures of the autopod. Limb bud specificity is also found in chicken but had not been detected in zebrafish embryos. Three of these elements govern central nervous system specific gene expression during mouse embryogenesis, each targeting a subset of endogenous Gli3 transcription sites. Even though fish, birds, and mammals share an ancient repertoire of gene regulatory elements within Gli3, the functions of individual enhancers from this catalog have diverged significantly. During evolution, ancient broad-range regulatory elements within Gli3 attained higher specificity, critical for patterning of more specialized structures, by abolishing the potential for redundant expression control. Conclusion These results not only demonstrate the high level of complexity in the genetic mechanisms controlling Gli3 expression, but also reveal the evolutionary significance of cis-acting regulatory networks of early developmental regulators in vertebrates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700