用户名: 密码: 验证码:
Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone
详细信息    查看全文
  • 作者:Cinthia Nú?ez (1) (5)
    Carlos Pe?a (2)
    Wolf Kloeckner (3)
    Alberto Hernández-Eligio (1)
    Alexander V. Bogachev (4)
    Soledad Moreno (1)
    Josefina Guzmán (1)
    Jochen Büchs (3)
    Guadalupe Espín (1)
  • 关键词:Azotobacter vinelandii ; Alginate ; Ubiquinone ; algD expression ; Gene regulation ; Respirometric analysis
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:97
  • 期:6
  • 页码:2503-2512
  • 全文大小:288KB
  • 参考文献:1. Alexeyev MF, Shokolenko IN, Croughan TP (1995) Improved antibiotic-resistance gene cassettes and omega elements for / Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160:63-7 CrossRef
    2. Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7:157-62 CrossRef
    3. Anderlei T, Zang W, Büchs J (2004) Online respiration activity measurements (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17:187-94 CrossRef
    4. Bali A, Blanco G, Hill S, Kennedy C (1992) Excretion of ammonium by a / nifL mutant of / Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol 58:1711-718
    5. Barry T, Geary S, Hannify S, MacGearailt C, Shalloo M, Heery D, Gannon F, Powell R (1992) Rapid mini-preparations of total RNA from bacteria. Nucleic Acids Res 20:4940 CrossRef
    6. Bekker M, Alexeeva S, Laan W, Sawers G, Teixeira de Mattos J, Hellingwerf K (2009) The ArcBA two-component system of / Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. J Bacteriol 192:746-54 CrossRef
    7. Bertsova YV, Bogachev AV, Skulachev VP (1998) Two NADH:ubiquinone oxidoreductases of / Azotobacter vinelandii and their role in the respiratory protection. Biochim Biophys Acta 1363:125-33 CrossRef
    8. Bertsova YV, Bogachev AV, Skulachev VP (2001) Noncoupled NADH:ubiquinone oxidoreductase of / Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869-874 CrossRef
    9. Campos M, Martinez-Salazar JM, Lloret L, Moreno S, Nú?ez C, Espín G, Soberón-Chávez G (1996) Characterization of the gene coding for GDP-mannose dehydrogenase ( / algD) from / Azotobacter vinelandii. J Bacteriol 178:1793-799
    10. Casta?eda M, Guzmán J, Moreno S, Espín G (2000) The GacS sensor kinase regulates alginate and poly-b-hydroxybutyrate production in / Azotobacter vinelandii. J Bacteriol 182:2624-628 CrossRef
    11. Casta?eda M, Sanchez J, Moreno S, Nú?ez C, Espín G (2001) The global regulators GacA and σs form part of a cascade that controls alginate production in / Azotobacter vinelandii. J Bacteriol 183:6787-793 CrossRef
    12. Dalton H, Postgate JR (1968) Effect of oxygen on growth of / Azotobacter chroococcum in batch and continuous cultures. J Gen Microbiol 54:463-73
    13. Díaz-Barrera A, Pe?a C, Galindo E (2007) The oxygen transfer rate influences the molecular mass of the alginate produced by / Azotobacter vinelandii. Appl Microbiol Biotechnol 76:903-10 CrossRef
    14. Galindo E, Pe?a C, Nú?ez C, Segura D, Espín G (2007) Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by / Azotobacter vinelandii. Microb Cell Fact 6:7 CrossRef
    15. Georgellis D, Kwon O, Lin EC (2001) Quinones as the redox signal for the arc two-component system of bacteria. Science 292:2314-316 CrossRef
    16. Hanahan D (1983) Studies on transformation of / Escherichia coli with plasmids. J Mol Biol 166:557-80 CrossRef
    17. Hay ID, Rehman ZU, Ghaffor A, Rehm BH (2010) Bacterial biosynthesis of alginates. J Chem Technol Biotechnol 85:752-59 CrossRef
    18. Hernández RM, Orive G, Murua A, Pedraz JL (2010) Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 62:711-30 CrossRef
    19. Kennedy C, Gamal R, Hummprey R, Ramos J, Brigle K, Dean D (1986) The / nifH, / nifM, and / NifN genes of / Azotobacter vinelandii: characterization by Tn5 mutagenesis and isolation from pLARF1 gene bank. Mol Gen Genet 205:318-25 CrossRef
    20. Klimek J, Ollis D (1980) Extracellular microbial polysaccharides: kinetics of / Pseudomonas sp. / Azotobacter vinelandii, and / Aureobasidium pullulans batch fermentations. Biotechnol Bioeng 22:2321-342 CrossRef
    21. Knutson CA, Jeanes A (1968) A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 24:470-81 CrossRef
    22. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-76 CrossRef
    23. Larsen B, Haug A (1971) Biosynthesis of alginate. 1. Composition and structure of alginate produced by / Azotobacter vinelandii (Lipman). Carbohydr Res 17:287-96 CrossRef
    24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265-75
    25. Malpica R, Sandoval GR, Rodriguez C, Franco B, Georgellis D (2006) Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid Redox Signal 8:781-95 CrossRef
    26. Manzo J, Cocotl-Ya?ez M, Tzontecomani T, Martínez VM, Bustillos R, Velasquez C, Goiz Y, Solis LY, López L, Fuentes LE, Nú?ez C, Segura D, Espín G, Casta?eda M (2012) Post-transcriptional regulation of the alginate biosynthetic gene / algD by the Gac/Rsm system in / Azotobacter vinelandii. J Mol Microb Biotechnol 21:147-59 CrossRef
    27. Martínez-Salazar JM, Moreno S, Nájera R, Boucher JC, Espín G, Soberón-Chávez G, Deretic V (1996) Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in / Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 178:1800-808
    28. Mejía-Ruiz H, Guzmán J, Moreno S, Soberón-Chávez G, Espín G (1997) The / Azotobacter vinelandii alg8 and / alg44 genes are essential for alginate synthesis and can be transcribed from an / algD-independent promoter. Gene 199:271-77 CrossRef
    29. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Sping Harbor
    30. Nú?ez C, León R, Guzmán J, Espín G, Soberón-Chávez G (2000a) Role of / Azotobacter vinelandii mucA and / mucC gene products in alginate production. J Bacteriol 182:6550-556 CrossRef
    31. Nú?ez C, Moreno S, Cárdenas L, Soberón-Chávez G, Espín G (2000b) Inactivation of the / ampDE operon increases transcription of / algD and affects morphology and encystment of / Azotobacter vinelandii. J Bacteriol 182:4829-835 CrossRef
    32. Nú?ez C, Bogachev AV, Guzmán G, Tello I, Guzmán J, Espín G (2009) The Na+-translocating NADH:ubiquinone oxidoreductase of / Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology 155:249-56 CrossRef
    33. Oelze J (2000) Respiratory protection of nitrogenase in / Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol Rev 24:321-33 CrossRef
    34. Page WJ, Knosp O (1989) Hyperproduction of poly-beta-hydroxybutyrate during exponential growth of / Azotobacter vinelandii UWD. Appl Environ Microbiol 55:1334-339
    35. Pe?a C, Galindo E, Büchs J (2011) The viscosifying power, degree acetylation and molecular mass of the alginate produced by / Azotobacter vinelandii in shake flasks are determined by the oxygen transfer rate. Proc Biochem 46:290-97 CrossRef
    36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor
    37. Segura D, Guzmán J, Espín G (2003) / Azotobacter vinelandii mutants that overproduce poly-beta-hydroxybutyrate or alginate. Appl Microbiol Biotechnol 63:159-63 CrossRef
    38. Senior PJ, Beech GA, Ritchie GA, Dawes EA (1972) The role of oxygen limitation in the formation of poly-?-hydroxybutyrate during batch and continuous culture of / Azotobacter beijerinckii. Biochem J 128:1193-201
    39. Setubal JC, dos Santos P, Goldman BS, Ertesv?g H, Espín G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, Curatti L, Du Z, Godsy E, Goodner B, Hellner-Burris K, Hernandez JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Latreille P, Ligon LS, Lu J, M?rk M, Miller NM, Norton S, O’Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme DJ, Sun J, Viana CV, Wallin E, Wang B, Wheeler C, Zhu H, Dean DR, Dixon R, Wood D (2009) Genome sequence of / Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534-545 CrossRef
    40. Shestopalov AI, Bogachev AV, Murtazina RA, Viryasov MB, Skulachev VP (1997) Aeration-dependent changes in composition of the quinone pool in / Escherichia coli. Evidence of post-transcriptional regulation of the quinone biosynthesis. FEBS Lett 404:272-74 CrossRef
    41. Skjak-Braek G, Grasdalen H, Larsen B (1986) Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr Res 154:239-50 CrossRef
    42. Soballe B, Poole RK (1999) Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology 145:1817-830 CrossRef
    43. Vázquez A, Moreno S, Guzmán J, Alvarado A, Espín G (1999) Transcriptional organization of the / Azotobacter vinelandii algGXLVIFA genes: characterization of / algF mutants. Gene 232:217-22 CrossRef
    44. Wallace BJ, Young IG (1977) Role of quinones in electron transport to oxygen and nitrate in / Escherichia coli. Studies with a / ubiA-menA- double quinone mutant. Biochim Biophys Acta 461:84-00 CrossRef
    45. Wilson KJ, Sessitsch A, Corbo JC, Giller KE, Akkermans AD, Jefferson RA (1995) ?-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology 141:1691-705 CrossRef
    46. Wu G, Williams HD, Gibson F, Poole RK (1993) Mutants of / Escherichia coli affected in respiration: the cloning and nucleotide sequence of / ubiA, encoding the membrane-bound p-hydroxybenzoate:octaprenyl transferase. J Gen Microbiol 139:1795-805
  • 作者单位:Cinthia Nú?ez (1) (5)
    Carlos Pe?a (2)
    Wolf Kloeckner (3)
    Alberto Hernández-Eligio (1)
    Alexander V. Bogachev (4)
    Soledad Moreno (1)
    Josefina Guzmán (1)
    Jochen Büchs (3)
    Guadalupe Espín (1)

    1. Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
    5. Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Apdo Postal 510-3, Cuernavaca, Morelos, 62251, México
    2. Departamento de Ingeniería celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
    3. AVT. Biochemical Engineering, RWTH Aachen University, Aachen, 52074, Germany
    4. Department of Molecular Energetics of Microorganisms, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
  • ISSN:1432-0614
文摘
Azotobacter vinelandii, a soil nitrogen fixing bacterium, produces alginate a polysaccharide with industrial and medical relevant applications. In this work, we characterized a miniTn5 mutant, named GG101, that showed a 14-fold increase in the specific production of alginate when grown diazotrophically on solid minimal medium comparing to the parental E strain (also named AEIV). Quantitative real-time reverse transcription PCR analysis indicated that this increased alginate production was due to higher expression levels of several biosynthetic alg genes such as algD. Sequencing of the locus interrupted in GG101 indicated that the miniTn5 was inserted in the positive strand, and 10?bp upstream the start codon of the gene ubiA, encoding the enzyme for the second step in the biosynthesis of ubiquinone (Q8). Both the transcription of ubiA and the content of Q8 are decreased in the mutant GG101 when compared to the wild-type strain E. Genetic complementation of mutant GG101 with a wild-type copy of the ubiCA genes restored the content of Q8 and reduced the production of alginate to levels similar to those of the parental E strain. Furthermore, respirometric analysis showed a reproducible decrease of about 8?% in the respiratory capacity of mutant GG101, at exponential phase of growth in liquid minimal medium. Collectively, our data show that a decreased content in Q8 results in higher levels of alginate in A. vinelandii.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700