用户名: 密码: 验证码:
Passive velocity tomography for mudstone under uniaxial compression using acoustic emission
详细信息    查看全文
文摘
A passive velocity tomography method using acoustic emission (AE) was used to study characteristics of AE responses and velocity redistributions in mudstone during uniaxial deformation. Two standard cylindrical samples were uniaxially deformed until failure with axial loading rates of 1.00 × 10–3 mm/s and 2.50 × 10–3 mm/s, respectively. AE activities were monitored using eight sensors and every 100 consecutive AE events were used for tomography calculations. For each sample, three typical tomography results were obtained which reflected significant variation of velocity redistributions. From the experimental data, it can be concluded that the stress drop point observed in the stress-strain curves with high energies and AE events indicated coalescence of micro-cracks and formation of the main shear plane. In the initial tomography phase, the velocity difference was low and few AE events were detected. As loading increased, AE events clustered and velocity differences became obvious with high velocities being mainly located near the sample boundary, whereas low velocities begun to propagate from the bottom corner to the core. When approaching failure, velocity anomaly regions further expanded and low velocity regions interconnected with the position being consistent with macro-fractures in the post-failure samples. The positions of the AE events with large energies over 50 μV·s were found to correlate well with high velocity regions in the tomography results whose calculation phase was conducted prior to the occurrence of large energy AE events. This method can be used for the prediction of large energy AE events in rocks under unconfined pressures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700