用户名: 密码: 验证码:
Difference of brightness temperatures between 19.35 GHz and 37.0 GHz in CHANG’E-1 MRM: implications for the burial of shallow bedrock at lunar low latitude
详细信息    查看全文
  • 作者:Wen Yu ; Xiongyao Li ; Guangfei Wei ; Shijie Wang
  • 关键词:moon ; CE ; 1 ; brightness temperature ; bedrock ; burial depth
  • 刊名:Frontiers of Earth Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:10
  • 期:1
  • 页码:108-116
  • 全文大小:2,625 KB
  • 参考文献:Bandfield J L, Ghent R R, Vasavada A R, Paige D A, Lawrence S J, Robinson M S (2011). Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. Journal of Geophysical Research: Planets (1991–2012), 116(E12), doi: 10.1029/2011JE003866
    Bart G D, Nickerson R D, Lawder M T, Melosh H J (2011). Global survey of lunar regolith depths from LROC images. Icarus, 215(2): 485–490CrossRef
    Chan K L, Tsang K T, Kong B, Zheng Y C (2010). Lunar regolith thermal behavior revealed by Chang’E-1 microwave brightness temperature data. Earth Planet Sci Lett, 295(1–2): 287–291CrossRef
    Cooper M R, Kovach R L, Watkins J S (1974). Lunar near surface structure. Rev Geophys, 12(3): 291–308CrossRef
    Fa W Z, Jin Y Q (2007). Simulation of brightness temperature of lunar surface and inversion of the regolith layer thickness. Journal of Geophysical Research: Planets (1991–2012), 112(E5), doi: 10.1029/2006JE002751
    Fa W Z, Jin Y Q (2010). A primary analysis of microwave brightness temperature of lunar surface from Chang’E-1 multi-channel radiometer observation and inversion of regolith layer thickness. Icarus, 207(2): 605–615CrossRef
    Heiken G H, Vaniman DeT, French B M (1991). Lunar Source-Book: A User’s Guide to the Moon. London: Cambridge University Press
    Jiang J S, Wang Z Z, Zhang X H, Zhang D H, Li Y, Lei L Q, Zhang WG, Cui H Y, Guo W, Li D H, Dong X L, Liu H G (2009). China probe CE-1 unveils world first moon-globe microwave emission map—The microwave moon some exploration results of Chang’E-1 microwave sounder. Remote Sensing Technology and Application, 24(4): 409–422
    Jiang J S, Jin Y Q (2010). Selected Papers on Microwave Lunar Exploration in Chinese Chang’E-1 Project. Beijing: Science Press
    Jiang J S, Wang Z Z (2008). The microwave moon—Microwave sounding the lunar surface from China lunar orbiter CE-1 satellite. 37th COSPAR meeting, Montreal, Canada
    Jin Y Q, Fa W Z (2011). The modeling analysis of microwave emission from stratified media of non-uniform lunar cratered terrain surface for Chinese Chang-E 1 observation. Chin Sci Bull, 56(11): 1165–1171CrossRef
    Li Y, Wang Z Z, Jiang J S (2010). Simulations on the influence of lunar surface temperature profiles on CE-1 lunar microwave sounder brightness temperature. Science China: Earth Sciences, 53(9): 1379–1391CrossRef
    Mendell W W (1976). Degradation of large, period II lunar craters. In: Lunar and Planetary Science Conference Proceedings, 7: 2705–2716
    Nakamura Y, Dorman J, Duennebier F, Lammlein D, Latham G (1975). Shallow lunar structure determined from the passive seismic experiment. Moon, 13(1–3): 57–66CrossRef
    Neukum G, König B (1976). Dating of individual lunar craters. In: Lunar and Planetary Science Conference Proceedings, 7: 2867–2881
    Oberbeck V R, Quaide W L (1968). Genetic implication of lunar regolith thickness variations. Icarus, 9(1–3): 446–465CrossRef
    Olhoeft G R, Strangway D W (1975). Dielectric properties of the first 100 meters of the Moon. Earth Planet Sci Lett, 24(3): 394–404CrossRef
    Quaide W L, Oberbeck V R (1968). Thickness determinations of the lunar surface layer from lunar impact craters. J Geophys Res, 73(16): 5247–5270CrossRef
    Shkuratov Y G, Bondarenko N V (2001). Regolith layer thickness mapping of the Moon by radar and optical data. Icarus, 149(2): 329–338CrossRef
    Shoemaker E M, Batson R M, Holt E S, Morris H E, Rennilson J J, Whitaker E A (1969). Observations of the lunar regolith and the Earth from the television camera on Surveyor 7. J Geophys Res, 74(25): 6081–6119CrossRef
    Strangway D, Pearce G, Olhoeft G (1977). Magnetic and dielectric properties of lunar samples. In: Promeroy J H, Hubbard N J, eds. The Soviet-American Conference on Cosmochemistry of the Moon and Planets. NASA SP-370, 417–433
    Vasavada A R, Bandfield J L, Greenhagen B T, Hayne P O, Siegler MA, Williams J P, Paige D A (2012). Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment. J Geophys Res, 117(E12): E00H18
    Vasavada A R, Paige D A, Wood S E (1999). Near surface temperatures on mercury and the moon and the stability of polar ice deposites. Icarus, 141(2): 179–193CrossRef
    Watkins J S, Kovach R L (1973). Seismic investigation of the lunar regolith. Proceedings of the Fourth Lunar Science Conference, 3:, 2561–2574
    Wilhelms D E, McCauley J F (1971). Geologic map of the near side of the Moon. U.S. Department of the Interior, U.S. Geological Survey
    Zheng Y C, Tsang K T, Chan K L, Zou Y L, Zhang F, Ouyang Z Y (2012). First microwave map of the Moon with Chang’E-1 data: the role of local time in global imaging. Icarus, 219(1): 194–210CrossRef
  • 作者单位:Wen Yu (1) (2)
    Xiongyao Li (1)
    Guangfei Wei (1) (2)
    Shijie Wang (1)

    1. Lunar and Planetary Science Research Center, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
    2. University of Chinese Academy of Sciences, Beijing, 100039, China
  • 刊物主题:Earth Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2095-0209
文摘
Indications of buried lunar bedrock may help us to understand the tectonic evolution of the Moon and provide some clues for formation of lunar regolith. So far, the information on distribution and burial depth of lunar bedrock is far from sufficient. Due to good penetration ability, microwave radiation can be a potential tool to ameliorate this problem. Here, a novel method to estimate the burial depth of lunar bedrock is presented using microwave data from Chang’E-1 (CE-1) lunar satellite. The method is based on the spatial variation of differences in brightness temperatures between 19.35 GHz and 37.0 GHz (ΔTB). Large differences are found in some regions, such as the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, and the highland east of Mare Smythii. Interestingly, a large change of elevation is found in the corresponding region, which might imply a shallow burial depth of lunar bedrock. To verify this deduction, a theoretical model is derived to calculate the ΔTB. Results show that ΔTB varies from 12.7 K to 15 K when the burial depth of bedrock changes from 1 m to 0.5 m in the equatorial region. Based on the available data at low lunar latitude (30°N-30°S), it is thus inferred that the southwest edge of Oceanus Procellarum, the area between Mare Tranquillitatis and Mare Nectaris, the highland located east of Mare Smythii, the edge of Pasteur and Chaplygin are the areas with shallow bedrock, the burial depth is estimated between 0.5 m and 1 m. Keywords moon CE-1 brightness temperature bedrock burial depth

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700