用户名: 密码: 验证码:
Toughening of polylactide with epoxy-functionalized methyl methacrylate–butyl acrylate copolymer
详细信息    查看全文
  • 作者:Wu Li ; Dandan Wu ; Shulin Sun ; Guangfeng Wu ; Huixuan Zhang ; Yunjiao Deng…
  • 关键词:Polylactide ; Toughening ; Mechanical properties ; Morphological properties ; Blends
  • 刊名:Polymer Bulletin
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:71
  • 期:11
  • 页码:2881-2902
  • 全文大小:2,263 KB
  • 参考文献:1. Hung CY, Wang CC, Chen CY (2013) Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymer as chain extenders. Polymer 54:1860-866 CrossRef
    2. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:184-846 CrossRef
    3. Pillin I, Montrelay N, Bourmaud A, Grohens Y (2008) Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polym Degrad Stabil 93:321-28 CrossRef
    4. Gupta S, Tyagi R, Parmar VS, Sharma SK, Haag R (2012) Polyether based amphiphiles for delivery of active components. Polymer 53:3053-078 CrossRef
    5. Jiang N, Jiang S, Hou Y, Yan S, Zhang G, Gan Z (2010) Influence of chemical structure on enzymatic degradation of single crystals of PCL- / b-PEO amphiphilic block copolymer. Polymer 51:2426-434 CrossRef
    6. Anderson KS, Lim SH, Hillmyer MA (2003) Toughening of polylactide by melt blending with linear low-density polyethylene. J Appl Polym Sci 89:3757-768 CrossRef
    7. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stabil 59:145-52 CrossRef
    8. Li J, Ren J, Cao Y, Yuan W (2010) Synthesis of biodegradable pentaarmed star-block copolymers via an asymmetric BIS-TRIS core by combination of ROP and RAFT: from star architectures to double responsive micelles. Polymer 51:1301-310 CrossRef
    9. Chow WS, Lok SK (2009) Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Analy and Calorim 95:627-32 CrossRef
    10. Ahmed J, Zhang JX, Song Z, Varshney SK (2009) Thermal properties of polylactides. J Therm Anal Calorim 95:957-64 CrossRef
    11. Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432-46 CrossRef
    12. Grijpma DW, Pennings AJ (1994) (Co)polymers of l -lactide, 1. Synthesis, thermal properties and hydrolytic degradation. Macromol Chem Phys 195:1633-647 CrossRef
    13. Hiljanen-Vainio M, Karjalainen T, Seppala J (1996) Biodegradable lactone copolymers. I. Characterization and mechanical behavior of ε-caprolactone and lactide copolymers. J Appl Polym Sci 59:1281-288 CrossRef
    14. Ruckenstein E, Yuan Y (1998) Molten ring-open copolymerization of l -lactide and cyclic trimethylene carbonate. J Appl Poym Sci 69:1429-434 CrossRef
    15. Baiardo M, Frisoni G, Scandola M, Rimelen M, Rimenlen M, Lips D, Ruffieux K, Wintermantel E (2003) Thermal and mechanical properties of plasticized poly(l -lactic acid). J Appl Poly Sci 90:1731-738 CrossRef
    16. Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303-310 CrossRef
    17. Labrecque LV, Kumar RA, Dave V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507-513 CrossRef
    18. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209-219 CrossRef
    19. Sun SL, Zhang MY, Zhang HX, Zhang XM (2011) Polylactide toughening with epoxy-functionalized grafted acrylonitrile–butadiene–styrene particles. J Appl Polym Sci 122:2992-999 CrossRef
    20. Wu NJ, Wang HH, Ding MC, Man L, Zhang JM (2013) Cold-crystallization behavior of poly(l -lactide)/ACR blend films investigated by in situ FTIR spectroscopy. J Appl Polym Sci 127:4617-623 CrossRef
    21. Wu NJ, Ding MC, Zhang JM, Lin RX (2012) Mechanical properties and crystallization of Poly(l -lactide) films with several percents of ACR nanoparticles. Mater Lett 83:148-50 CrossRef
    22. Ge XG, George S, Law S, Sain M (2011) Mechanical properties and morphology of polylactide composites with Acrylic impact modifier. J Macromol Sci B 50:2070-083 CrossRef
    23. Cecere A, Greco R, Ragosta G, Taglialatela A (1990) Rubber toughened polybutylene terephthalate: influence of processing on morphology and impact properties. Polymer 31:1239-244 CrossRef
    24. Sun YJ, Hu GH, Lambla M, Kotlar HK (1996) In situ compatibilization of polypropylene and poly (butylene terephthalate) polymer blends by one-step reactive extrusion. Polymer 37:4119-127 CrossRef
    25. Hu GH, Sun YJ, Lambla M (1996) Devolatilization: a critical sequential operation for in situ compatibilization of immiscible polymer blends by one-step reactive extrusion. Polym Eng Sci 36:676-84 CrossRef
    26. Oyama H (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 50:747-51 CrossRef
    27. Fischer EW, Sterzed HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Coll Polym Sci 251:980-90
    28. Hao YP, Liang HY, Bian JJ, Sun SL, Zhang HL, Dong LS (2014) Toughening of polylactide with epoxy-functionalized methyl methacrylate–butadiene copolymer. Polym Int 63:660-66 CrossRef
    29. Lin YJ, Shimizu H (2009) Improvement in toughness of poly(l -lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS): morphology and properties. Eur Polym J 45:738-46 CrossRef
    30. Meng B, Deng JJ, Liu Q, Wu ZH, Yang W (2012) Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: structure and properties. Eur Polym J 48:127-35 CrossRef
    31. Zhang HL, Liu NA, Ran XH, Han CY, Han LJ, Zhang YG, Dong LS (2012) Toughening of polylactide by melt blending with methyl methacrylate–butadiene–styrene copolymer. J Appl Polym Sci 125:550-61 CrossRef
    32. Larocca NM, Hage E, Pessan LA (2004) Toughening of poly(butylene terephthalate) by AES terpolymer. Polymer 45:5265-277 CrossRef
    33. Jiang L, Zhang JW, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632-644 CrossRef
    34. Pearson RA, Yee AF (1986) Toughening mechanisms in elastomer-modified epoxies. Part 1. Mechanical studies. J Mater Sci 21:2475-488 CrossRef
    35. Zhang GB, Zhang JM, Wang SG, Shen DY (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci Part B: Polym Phys 41:23-0 CrossRef
    36. Hu GH, Sun YJ, Lambla M (1996) Effects of processing parameters on the in situ compatibilization of polypropylene and poly(butylene terephthalate) blends by one-step reactive extrusion. J Appl Polym Sci 61:1039-047 CrossRef
    37. Cartier H, Hu GH (2000) Compatibilization of polypropylene and poly(butylene terephthalate) blends by reactive extrusion: effects of the molecular structure of a reactive compatibilizer. J Mater Sci 35:1985-996 CrossRef
    38. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stabil 97:1898-914 CrossRef
    39. Hyun YH, Lim ST, Choi HJ, Jhon MS (2001) Rheology of poly(ethylene oxide)/organoclay nanocomposites. Macromolecules 34:8084-093 CrossRef
    40. Ko SW, Gupta RK, Bhattacharya SN, Choi HJ (2010) Rheology and physical characteristics of synthetic biodegradable aliphatic polymer blends dispersed with MWNTs. Macromol Mater Eng 295:320-28 CrossRef
  • 作者单位:Wu Li (1)
    Dandan Wu (1)
    Shulin Sun (1)
    Guangfeng Wu (1)
    Huixuan Zhang (1)
    Yunjiao Deng (1)
    Huiliang Zhang (2)
    Lisong Dong (2)

    1. Changchun University of Technology, Changchun, 130012, China
    2. Key Laboratory of Polymer Ecomaterials, Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Changchun, 130022, China
  • ISSN:1436-2449
文摘
Glycidyl methacrylate-functionalized methyl methacrylate–butyl acrylate (GACR) core–shell structure copolymers were synthesized to toughen polylactide (PLA). With an increase in GACR content, the PLA/GACR blends showed decreased tensile strength and modulus; however, the elongation at break and the impact strength were significantly increased compared with that of PLA. The brittle fracture of neat PLA was gradually transformed into ductile fracture by the addiction of GACR. From dynamic mechanical analysis, the rigidity of the PLA/GACR blends was decreased with the increase of GACR content. The addition of GACR decreased the degree of crystallinity of PLA. The GACR was found to aggregate to form clusters with size increasing with increasing GACR content by transmission electron microscope analysis. The clusters dispersed in PLA matrix uniformly. It was found that PLA demonstrated large area, plastic deformation (shear yielding) and cavities in the blend upon being subjected the tensile and impact tests, which was an important energy-dissipation process and led to a toughened and transparent blend.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700