用户名: 密码: 验证码:
Effect of alternating electric current on the nanoindentation of copper
详细信息    查看全文
  • 作者:Guangfeng Zhao (1)
    Fuqian Yang (1)
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:109
  • 期:3
  • 页码:553-559
  • 全文大小:630KB
  • 参考文献:1. N.L. Michael, C.-U. Kim, P. Gillespie, R. Augur, Electromigration failure in ultra-fine copper interconnects. J. Electron. Mater. 32, 988-93 (2003) CrossRef
    2. A. Gladkikh, Y. Lereah, E. Glickman, M. Karpovski, A. Palevski, J. Schubert, Hillock formation during electromigration in Cu and Al thin films: three-dimensional grain growth. Appl. Phys. Lett. 66, 1214-216 (1995) CrossRef
    3. A.W. Park, R.W. Vook, Activation energy for electromigration in Cu films. Appl. Phys. Lett. 59, 175-77 (1991) CrossRef
    4. T. Nitta, T. Ohmi, M. Otsuki, T. Takewaki, T. Shibata, Electrical-properties of giant-grain copper thin-films formed by a low kinetic-energy particle process. J. Electrochem. Soc. 139, 922-27 (1992) CrossRef
    5. A.S. Budiman, W.D. Nix, N. Tamura, B.C. Valek, K. Gadre, J. Maiz, R. Spolenak, J.R. Patel, Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction. Appl. Phys. Lett. 88, 233515 (2006) CrossRef
    6. H. Zhang, G.S. Cargill III, Electromigration-induced strain relaxation in Cu conductor lines. J. Mater. Res. 26, 498-02 (2011) CrossRef
    7. K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen, K.N. Tu, Stability of nanoscale twins in copper under electric current stressing. J.?Appl. Phys. 108, 066103 (2010) CrossRef
    8. H. Ogi, A. Yamamoto, K. Kondou, K. Nakano, K. Morita, N. Nakamura, T. Ono, M. Hirao, Significant softening of copper nanowires during electromigration studied by picosecond ultrasound spectroscopy. Phys. Rev. B 82, 155436 (2010) CrossRef
    9. S. Sebastiant, S.K. Biswast, Effect of interface friction on the mechanics of indentation of a finite layer resting on a rigid substrate. J. Phys. D, Appl. Phys. 24, 1131-140 (1991) CrossRef
    10. W.J. Poole, M.F. Ashby, N.A. Fleck, Micro-hardness of annealed and work-hardened copper polycrystals. Scr. Mater. 34, 559-64 (1996) CrossRef
    11. M.M. Chaudhri, Subsurface strain distribution around Vickers hardness indentations in annealed polycrystalline copper. Acta Mater. 46, 3047-056 (1998) CrossRef
    12. F.Q. Yang, G.F. Zhao, Effect of electric current on nanoindentation of copper. Nanosci. Nanotechnol. Lett. 2, 322-26 (2010) CrossRef
    13. R. Chen, F.Q. Yang, Impression creep of a Sn60Pb40 alloy: the effect of electric current. J. Phys. D 41, 155406 (2008) CrossRef
    14. R. Chen, F.Q. Yang, Effect of DC current on the creep deformation of tin. J. Electron. Mater. 39, 2611-617 (2010) CrossRef
    15. R. Chen, F.Q. Yang, Effect of electric current on the creep deformation of lead. Mater. Sci. Eng. A 528, 2319-325 (2011) CrossRef
    16. F.Q. Yang, K. Geng, P.K. Liaw, G. Fan, H. Choo, Deformation in a Zr57Ti5Cu20Ni8Al10 bulk metallic glass during nanoindentation. Acta Mater. 55, 321-27 (2007) CrossRef
    17. V. Srinivasarao, R. Jayaganthan, V.N. Sekhar, K. Mohankumar, A.A.O. Tay, V. Kripesh, Nanoindentation study of the sputtered Cu thin films for interconnect applications, in / IEEE Electron. Packaging Tech. Conf. (2004), pp. 343-47
    18. X. Deng, N. Chawla, K.K. Chawla, M. Koopman, Deformation behavior of (Cu, Ag)-Sn intermetallics by nanoindentation. Acta Mater. 52, 4291-303 (2004) CrossRef
    19. M. Atkinson, Origin of the size effect in indentation of metals. Int. J. Mech. Sci. 33, 843-50 (1991) CrossRef
    20. E. Manika, J. Maniks, Size effects in micro- and nanoscale indentation. Acta Mater. 54, 2049-056 (2006) CrossRef
    21. M.F. Ashby, Work hardening of dispersion-hardened crystals. Philos. Mag. 14, 1157-178 (1966) CrossRef
    22. N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245-271 (2001) CrossRef
    23. P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52, 1379-406 (2004) CrossRef
    24. H.B. Muhlhaus, E.C. Aifantis, A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845-57 (1991) CrossRef
    25. G.F. Zhao, M. Liu, F.Q. Yang, The effect of an electric current on the nanoindentation behavior of tin. Acta Mater. 60, 3773-782 (2012) CrossRef
    26. D.L. Joslin, W.C. Oliver, A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5, 123-26 (1990) CrossRef
    27. T.Y. Zhang, W.H. Xu, Surface effects on nanoindentation. J.?Mater. Res. 17, 1715-720 (2002) CrossRef
    28. T.Y. Zhang, W.H. Xu, M.H. Zhao, The role of plastic deformation at a rough surface in the size-dependent hardness. Acta Mater. 52, 57-8 (2004) CrossRef
  • 作者单位:Guangfeng Zhao (1)
    Fuqian Yang (1)

    1. Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
  • ISSN:1432-0630
文摘
Electromechanical interaction determines the structural reliability of electronic interconnects. Using the nanoindentation technique, the effect of alternating electric current on the indentation deformation of copper strips was studied for the indentation load in a range of 100 to 1600?μN at room temperature. During the test, an alternating electric current of the electric current density in a range of 1.25 to 4.88?kA/cm2 was passed through the copper strips. The indentation results showed that the reduced contact modulus decreased linearly with increasing the electric current density. The indentation hardness decreased with increasing the indentation deformation, demonstrating the normal indentation size effect. Using the model of strain gradient plasticity, we found that the strain gradient underneath the indentation decreased slightly with increasing the electric current density for the same indentation depth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700