用户名: 密码: 验证码:
Perspectives on water science: transport and application of confined water
详细信息    查看全文
  • 作者:XiPing Zeng (1)
    JinBo Wu (1)
    ShunBo Li (1)
    YeungYeung Chau (1)
    GuangHong He (2)
    WeiJia Wen (1)
    GuoZhen Yang (3)
  • 关键词:water science ; confined water surface ; confined water bulk ; transport
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:57
  • 期:5
  • 页码:829-835
  • 全文大小:
  • 参考文献:1. Ludwig R. Water: From clusters to the bulk. Angew Chem Inter Ed, 2001, 40(10): 1808鈥?827 CrossRef
    2. Perera A. On the microscopic structure of liquid water. Mol Phys, 2011, 109(20): 2433鈥?441 CrossRef
    3. Paik D H, Lee I R, Yang D S, et al. Electrons in finite-sized water cavities: Hydration dynamics observed in real time. Science, 2004, 306(5696): 672鈥?75 CrossRef
    4. Ruan C Y, Lobastov V A, Vigliotti F, et al. Ultrafast electron crystallography of interfacial water. Science, 2004, 304(5667): 80鈥?4 CrossRef
    5. Shin J W, Hammer N I, Diken E G, et al. Infrared signature of structures associated with the H+(H2O)( / n) ( / n=6 to 27) clusters. Science, 2004, 304(5674): 1137鈥?140 CrossRef
    6. Smith J D, Cappa C D, Wilson K R, et al. Energetics of hydrogen bond network rearrangements in liquid water. Science, 2004, 306(5697): 851鈥?53 CrossRef
    7. Torre R, Bartolini P, Righini R. Structural relaxation in supercooled water by time-resolved spectroscopy. Nature, 2004, 428(6980): 296鈥?99 CrossRef
    8. Nakayama H, Yamaguchi H, Sasaki S, et al. Pressure-temperature phase diagram of molecular crystal H2S by Raman spectroscopy. Phys B-Condens Matter, 1996, 219(20): 523鈥?25 CrossRef
    9. Marion G M, Jakubowski S D. The compressibility of ice to 2.0 kbar. Cold Reg Sci Technol, 2004, 38(2鈥?): 211鈥?18 CrossRef
    10. Franks F. Protein stability: The value of 鈥榦ld literature鈥? Biophys Chem, 2002, 96(2鈥?): 117鈥?27 CrossRef
    11. Zhang L Y, Wang L J, Kao Y T, et al. Mapping hydration dynamics around a protein surface. Proc Natl Acad Sci, 2007, 104(47): 18461鈥?8466 CrossRef
    12. Chaplin M. Opinion-Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Bio, 2006, 7(11): 861鈥?66 CrossRef
    13. Dashnau J L, Sharp K A, Vanderkooi J M. Carbohydrate intramolecular hydrogen bonding cooperativity and its effect on water structure. J Phys Chem B, 2005, 109(50): 24152鈥?4159 CrossRef
    14. Wang X B, Yang X, Nicholas J B, et al. Bulk-like features in the photoemission spectra of hydrated doubly charged anion clusters. Science, 2001, 294(5545): 1322鈥?325 CrossRef
    15. Stone H A, Stroock A D, Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech, 2004, 36: 381鈥?11 CrossRef
    16. Stiles T, Fallon R, Vestad T, et al. Hydrodynamic focusing for vacuum-pumped microfluidics. Microfluid Nanofluid, 2005, 1(3): 280鈥?83 CrossRef
    17. Wu J B, Wen W J, Sheng P. Smart electroresponsive droplets in microfluidics. Soft Matter, 2012, 8(46): 11589鈥?1599 CrossRef
    18. Eijkel J. Liquid slip in micro- and nanofluidics: Recent research and its possible implications. Lab Chip, 2007, 7(3): 299鈥?01 CrossRef
    19. Schoch R B, Han J Y, Renaud P. Transport phenomena in nanofluidics. Rev Mod Phys, 2008, 80(3): 839鈥?83 CrossRef
    20. Tarasevich Y I. State and structure of water in vicinity of hydrophobic surfaces. Colloid J, 2011, 73(2): 257鈥?66 CrossRef
    21. Wu D, Wang Y Z, Zhang J X. Non-contact to contact transition: Direct measurement of interaction forces between a solid probe and a plannar air-water interface. Chin Phys Lett, 2007, 24(10): 2914鈥?917 CrossRef
    22. Du Q, Freysz E, Shen Y R. Surface vibrational spectroscopic studies of hydrogen-bonding and hydrophobicity. Science, 1994, 264(5160): 826鈥?28 CrossRef
    23. Gan W, Wu D, Zhang Z, et al. Orientation and motion of water molecules at air/water interface. Chin J Chem Phys, 2006, 19(1): 20鈥?4 CrossRef
    24. Kuo I F W, Mundy C J. An / ab initio molecular dynamics study of the aqueous liquid-vapor interface. Science, 2004, 303(5658): 658鈥?60 CrossRef
    25. Raymond E A, Tarbuck T L, Brown M G, et al. Hydrogen-bonding interactions at the vapor/water interface investigated by vibrational sum-frequency spectroscopy of HOD/H2O/D2O mixtures and molecular dynamics simulations. J Phys Chem B, 2003, 107(2): 546鈥?56 CrossRef
    26. Luzar A, Chandler D. Hydrogen-bond kinetics in liquid water. Nature, 1996, 379(6560): 55鈥?7 CrossRef
    27. Du Q, Superfine R, Freysz E, et al. Vibrational spectroscopy of water at the vapor water interface. Phys Rev Lett, 1993, 70(15): 2313鈥?316 CrossRef
    28. Shaw R A, Durant A J, Mi Y. Heterogeneous surface crystallization observed in undercooled water. J Phys Chem B, 2005, 109(20): 9865鈥?868 CrossRef
    29. Liu P, Harder E, Berne B J. Hydrogen-bond dynamics in the air-water interface. J Phys Chem B, 2005, 109(7): 2949鈥?955 CrossRef
    30. Greef R, Frey J G. The water-like film on water. Phys Stat Sol C, 2008, 5(5): 1184鈥?186 CrossRef
    31. Leyendekkers J V. Aqueous-solutions 1. Structural thermodynamic internal-pressure of water. J Phys Chem, 1983, 87(17): 3327鈥?333 CrossRef
    32. Kell G S. Density, thermal expansivity, and compressibility of liquid water from 0掳 to 150掳. Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J Chem Eng Data, 1975, 20(1): 97鈥?0 CrossRef
    33. Leberman R, Soper A K. Effect of high-salt concentrations on water-structure. Nature, 1995, 378(6555): 364鈥?66 CrossRef
    34. Omta A W, Kropman M F, Woutersen S, et al. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science, 2003, 301(5631): 347鈥?49 CrossRef
    35. Jones G, Ray W A. The surface tension of solutions of electrolytes as a function of the concentration IV. Magnesium sulfate. J Am Chem Soc, 1942, 64(12): 2744鈥?745 CrossRef
    36. Jones G, Ray W A. The surface tension of solutions of electrolytes as a function of the concentration III. Sodium chloride. J Am Chem Soc, 1941, 63(12): 3262鈥?263 CrossRef
    37. Jones G, Ray W A. The surface tension of solutions of electrolytes as a function of the concentration II. J Am Chem Soc, 1941, 63(1): 288鈥?94 CrossRef
    38. Jones G, Ray W A. The surface tension of solutions of electrolytes as a function of the concentration I. A differential method for measuring relative surface tension. J Am Chem Soc, 1937, 59(1): 187鈥?98 CrossRef
    39. Jones G, Ray W A. The surface tension of solutions. J Am Chem Soc, 1935, 57(5): 957鈥?58 CrossRef
    40. Petersen P B, Johnson J C, Knutsen K P, et al. Direct experimental validation of the Jones-Ray effect. Chem Phys Lett, 2004, 397(1鈥?): 46鈥?0 CrossRef
    41. Jungwirth P, Tobias D J. Specific ion effects at the air/water interface. Chem Rev, 2005, 106(4): 1259鈥?281 CrossRef
    42. Ehre D, Lavert E, Lahav M, et al. Water freezes differently on positively and negatively charged surfaces of pyroelectric materials. Science, 2010, 327(5966): 672鈥?75 CrossRef
    43. Ariga K, Michinobu T, Nakanishi T, et al. Chiral recognition at the air-water interface. Curr Opin Colloid Interface Sci, 2008, 13(1鈥?): 23鈥?0 CrossRef
    44. Squires T M, Quake S R. Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys, 2005, 77(3): 977鈥?026 CrossRef
    45. Capretto L, Cheng W, Hill M, et al. Microfluidics: Technologies and Applications. Berlin: Springer Berlin Heidelberg, 2011. 27鈥?8 CrossRef
    46. Gobby D, Angeli P, Gavriilidis A. Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng, 2001, 11(2): 126 CrossRef
    47. Erbacher C, Bessoth F G, Busch M, et al. Towards integrated continuous-flow chemical reactors. Mikrochim Acta, 1999, 131(1鈥?): 19鈥?4 CrossRef
    48. Bessoth F G, deMello A J, Manz A. Microstructure for efficient continuous flow mixing. Anal Commun, 1999, 36(6): 213鈥?15 CrossRef
    49. Floyd T M, Schmidt M A, Jensen K F. Silicon micromixers with infrared detection for studies of liquid-phase reactions. Ind Eng Chem Res, 2005, 44(8): 2351鈥?358 CrossRef
    50. Lee S W, Kim D S, Lee S S, et al. Split and recombination micromixer based on PDMS three-dimensional micro structure. J Micromech Microeng, 2006, 16: 1067鈥?072 CrossRef
    51. Hardt S, Pennemann H, Schonfeld F. Theoretical and experimental characterization of a low-Reynolds number split-and-recombine mixer. Microfluid Nanofluid, 2006, 2(3): 237鈥?48 CrossRef
    52. Munson M S, Yager P. Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal Chim Acta, 2004, 507(1): 63鈥?1 CrossRef
    53. Schonfeld F, Hessel V, Hofmann C. An optimised split-and-recom-bine micro-mixer with uniform 鈥榗haotic鈥?mixing. Lab Chip, 2004, 4(1): 65鈥?9 CrossRef
    54. Bertsch A, Heimgartner S, Cousseau P, et al. Static micromixers based on large-scale industrial mixer geometry. Lab Chip, 2001, 1(1): 56鈥?0 CrossRef
    55. Lim T W, Son Y, Jeong Y J, et al. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip, 2011, 11(1): 100鈥?03 CrossRef
    56. Knight J B, Vishwanath A, Brody J P, et al. Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Phys Rev Lett, 1998, 80(17): 3863鈥?866 CrossRef
    57. Lee G B, Chang C C, Huang S B, et al. The hydrodynamic focusing effect inside rectangular microchannels. J Micromech Microeng, 2006, 16(5): 1024鈥?032 CrossRef
    58. Glasgow I, Aubry N. Enhancement of microfluidic mixing using time pulsing. Lab Chip, 2003, 3(2): 114鈥?20 CrossRef
    59. Fujii T, Sando Y, Higashino K, et al. A plug and play microfluidic device. Lab Chip, 2003, 3(3): 193鈥?97 CrossRef
    60. Niu X Z, Liu L Y, Wen W J, et al. Hybrid approach to high-frequency microfluidic mixing. Phys Rev Lett, 2006, 97(4): 044501 CrossRef
    61. Lim C Y, Lam Y C, Yang C. Mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow. Biomicrofluidics, 2010, 4(1): 014101 CrossRef
    62. Oddy M H, Santiago J G, Mikkelsen J C. Electrokinetic instability micromixing. Anal Chem, 2001, 73(24): 5822鈥?832 CrossRef
    63. Yang R J, Wu C H, Tseng T I, et al. Enhancement of electrokinetically-driven flow mixing in microchannel with added side channels. Jpn J Appl Phys-Part 1, 2005, 44(10): 7634鈥?642 CrossRef
    64. Yang Z, Goto H, Matsumoto M, et al. Active micromixer for microfluidic systems using lead-zirconate-titanate(PZT)-generated ultrasonic vibration. Electrophoresis, 2000, 21(1): 116鈥?19 CrossRef
    65. Liu R H, Yang J N, Pindera M Z, et al. Bubble-induced acoustic micromixing. Lab Chip, 2002, 2(3): 151鈥?57 CrossRef
    66. Ahmed D, Mao X L, Shi J J, et al. A millisecond micromixer via single-bubble-based acoustic streaming. Lab Chip, 2009, 9(18): 2738鈥?741 CrossRef
    67. Oh K W, Lee K, Ahn B, et al. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip, 2012, 12(3): 515鈥?45 CrossRef
    68. Pennathur S, Santiago J G. Electrokinetic transport in nanochannels 1. Theory. Anal Chem, 2005, 77(21): 6772鈥?781 CrossRef
    69. Pennathur S, Santiago J G. Electrokinetic transport in nanochannels 2. Experiments. Anal Chem, 2006, 78(3): 972鈥?72
    70. Agre P, King L S, Yasui M, et al. Aquaporin water channels-from atomic structure to clinical medicine. J Physiol-London, 2002, 542(1): 3鈥?6 CrossRef
    71. Yakhshi-Tafti E, Cho H J, Kumar R. Droplet actuation on a liquid layer due to thermocapillary motion: Shape effect. Appl Phys Lett, 2010, 96(26): 264101 CrossRef
    72. Dixon H H, Joly J. On the ascent of sap. Ann Bot, 1894, 8: 468鈥?70
    73. Zimmermann U, Schneider H, Wegner L H, et al. What are the driving forces for water lifting in the xylem conduit? Physiol Plantarum, 2002, 114(3): 327鈥?35 CrossRef
    74. McCulloh K A, Sperry J S, Adler F R. Water transport in plants obeys Murray鈥檚 law. Nature, 2003, 421(6926): 939鈥?42 CrossRef
  • 作者单位:XiPing Zeng (1)
    JinBo Wu (1)
    ShunBo Li (1)
    YeungYeung Chau (1)
    GuangHong He (2)
    WeiJia Wen (1)
    GuoZhen Yang (3)

    1. Hong Kong University of Science and Technology, Hong Kong, China
    2. ChongQing University, Chongqing, 400044, China
    3. Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
  • ISSN:1869-1927
文摘
The confinements of water can be divided into two main categories, namely, the confinements on surface or interface and the confinements in bulk water. By adding ions or applying electric field, the intensity and distribution of the hydrogen bonds can be greatly affected. These are collectively known as confinement on water surface or interface, which has potential applications in life science and industries involving evaporation control. Confined bulk water could be found everywhere in nature, such as in granular and porous materials, macromolecules and gels, etc. The investigation of the physical properties and the transports of the confined bulk water will contribute to understanding certain types of life activities such as the water transport in plant and in new application of extracting the shale oil and water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700