用户名: 密码: 验证码:
Anaerobic Digestion of Yard Waste with Hydrothermal Pretreatment
详细信息    查看全文
  • 作者:Wangliang Li (1)
    Guangyi Zhang (1)
    Zhikai Zhang (1) (2)
    Guangwen Xu (1)
  • 关键词:Anaerobic digestion ; Hydrolysis ; Hydrothermal ; Biogas ; Municipal solid wastes
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:172
  • 期:5
  • 页码:2670-2681
  • 全文大小:385 KB
  • 参考文献:1. Deublein, D., & Steinhauser, A. (2008). / Biogas from waste and renewable resources: energy supply in the future-scenarios (pp. 7-3). Weinheim: Wiley. CrossRef
    2. Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. / Applied Energy, 94, 129-40. CrossRef
    3. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. / Bioresource Technology, 100, 10-8. CrossRef
    4. Sreekrishnan, T., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques––a review. / Bioresource Technology, 95, 1-0. CrossRef
    5. Kreuger, E., Sipos, B., Zacchi, G., Svensson, S. E., & Bjornsson, L. (2011). Bioconversion of industrial hemp to ethanol and methane: the benefits of steam pretreatment and co-production. / Bioresource Technology, 102, 3457-465. CrossRef
    6. Noike, T., Endo, G., Chang, J. E., Yaguchi, J. I., & Matsumoto, J. I. (2004). Characteristics of carbohydrate degradation and the rate‐limiting step in anaerobic digestion. / Biotechnology and Bioengineering, 27, 1482-489. CrossRef
    7. Lu, S., Imai, T., Ukita, M., & Sekine, M. (2007). Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes. / Journal of Environmental Sciences, 19, 416-20. CrossRef
    8. He, Y., Pang, Y., Liu, Y., Li, X., & Wang, K. (2008). Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. / Energy Fuel, 22, 2775-781. CrossRef
    9. Kumar, S., Kothari, U., Kong, L. Z., Lee, Y. Y., & Gupta, R. B. (2011). Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres. / Biomass and Bioenergy, 35(2), 956-68. CrossRef
    10. Xiao, L. P., Shi, Z. J., Xu, F., & Sun, R. C. (2012). Hydrothermal carbonization of lignocellulosic biomass. / Bioresource Technology, 118, 619-23. CrossRef
    11. Quéméneur, M., Hamelin, J., Barakat, A., Steyer, J. P., Carrère, H., & Trably, E. (2012). Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. / International Journal of Hydrogen Energy, 37(4), 3150-159. CrossRef
    12. Barakat, A., Monlau, F., Steyer, J. P., & Carrere, H. (2012). Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. / Bioresource Technology, 104, 90-9. CrossRef
    13. Janzon, R., Schütt, F., Oldenburg, S., Fischer, E., K?rner, I., & Saake, B. (2014). Steam pretreatment of spruce forest residues: optimal conditions for biogas production and enzymatic hydrolysis. / Carbohydrate Polymers, 100, 202-10. CrossRef
    14. APHA. (2005). Standard methods for the examination of water and wastewater. 21st edn. Washington, DC: American Public Health Association.
    15. Zieminski, K., Romanowska, I., & Kowalska, M. (2012). Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. / Waste Management, 32, 1131-137. CrossRef
    16. Gunnar Jantsch, T., & Mattiasson, B. (2004). An automated spectrophotometric system for monitoring buffer capacity in anaerobic digestion processes. / Water Research, 38, 3645-650. CrossRef
    17. Merali, Z., Ho, J. D., Collins, S. R. A., et al. (2013). Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. / Bioresource Technology, 131, 226-34. CrossRef
    18. Tekin, K., Karag?z, S., & Bekta?, S. (2013). Hydrothermal conversion of woody biomass with disodium octaborate tetrahydrate and boric acid. / Industrial Crops Products, 49, 334-40. CrossRef
    19. Tekin, K., & Karagoz, S. (2013). Non-catalytic and catalytic hydrothermal liquefaction of biomass. / Research on Chemical Intermediates, 39, 485-98. CrossRef
    20. Zhu, J., Wan, C., & Li, Y. (2010). Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. / Journal of Bioresource Technology, 101, 7523-528. CrossRef
    21. Buyukkamaci, N., & Filibeli, A. (2004). Volatile fatty acid formation in an anaerobic hybrid reactor. / Process Biochemistry, 39, 1491-494. CrossRef
    22. Nguyen, P. H. L., Kuruparan, P., & Visvanathan, C. (2007). Anaerobic digestion of municipal solid waste as a treatment prior to landfill. / Bioresource Technology, 98, 380-87. CrossRef
    23. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. / Bioresource Technology, 99(10), 4044-064. CrossRef
    24. Hashimoto, A. G. (2004). Pretreatment of wheat straw for fermentation to methane. / Biotechnology and Bioengineering, 28, 1857-866. CrossRef
    25. Bj?rnsson, L., Murto, M., Jantsch, T. G., & Mattiasson, B. (2001). Evaluation of new methods for the monitoring of alkalinity, dissolved hydrogen and the microbial community in anaerobic digestion. / Water Research, 35(12), 2833-840. CrossRef
    26. Fezzani, B., & Cheikh, R. B. (2010). Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. / Bioresource Technology, 101(6), 1628-634. CrossRef
    27. Toor, S. S., & Rudolf, L. (2011). Hydrothermal liquefaction of biomass: a review of subcritical water technologies. / Energy, 36, 2328-342. CrossRef
    28. Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: a review. / Process Biochemistry, 48, 901-11. CrossRef
    29. Viéitez, E. R., & Ghosh, S. (1999). Biogasification of solid wastes by two-phase anaerobic fermentation. / Biomass of Bioenergy, 16(5), 299-09. CrossRef
    30. Athanasoulia, E., Melidis, P., & Aivasidis, A. (2012). Optimization of biogas production from waste activated sludge through serial digestion. / Renewable Energy, 47, 147-51. CrossRef
    31. Walker, M., Iyer, K., Heaven, S., & Banks, C. J. (2011). Ammonia removal in anaerobic digestion by biogas stripping: an evaluation of process alternatives using a first order rate model based on experimental findings. / Chemical Engineering Journal, 178, 138-45. CrossRef
    32. Komemoto, K., Lim, Y. G., Nagao, N., Onoue, Y., Niwa, C., & Toda, T. (2009). Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. / Waste Management, 29(12), 2950-955. CrossRef
  • 作者单位:Wangliang Li (1)
    Guangyi Zhang (1)
    Zhikai Zhang (1) (2)
    Guangwen Xu (1)

    1. State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
  • ISSN:1559-0291
文摘
The digestibility of lignocellulosic biomass is limited by its high content of refractory components. The objective of this study is to investigate hydrothermal pretreatment and its effects on anaerobic digestion of sorted organic waste with submerged fermentation. Hydrothermal pretreatment (HT) was performed prior to anaerobic digestion, and three agents were examined for the HT: hot compressed water, alkaline solution, and acidic solution. The concentrations of glucose and xylose were the highest in the sample pretreated in acidic solution. Compared with that of the untreated sample, the biogas yields from digesting the samples pretreated in alkaline solution, acidic solution, and hot water increased by 364, 107, and 79?%, respectively. The decrease of chemical oxygen demand (COD) in liquid phase followed the same order as for the biogas yield. The initial ammonia content of the treated samples followed the order sample treated in acidic solution > sample treated in alkaline solution > sample treated in hot water. The concentrations of volatile fatty acids (VFAs) were low, indicating that the anaerobic digestion process was running at continuously stable conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700