用户名: 密码: 验证码:
Meta-analysis reveals asymmetric reduction in the genetic diversity of introduced populations of exotic insects
详细信息    查看全文
  • 作者:Daifeng Cheng ; Guangwen Liang ; Yijuan Xu
  • 关键词:Biological invasion ; Genetic diversity ; Insects ; Effect size ; Meta ; analysis
  • 刊名:Biological Invasions
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:18
  • 期:4
  • 页码:1163-1175
  • 全文大小:2,785 KB
  • 参考文献:Alexander JM, Poll M, Dietz H et al (2009) Contrasting patterns of genetic variation and structure in plant invasions of mountains. Divers Distrib 15:502–512CrossRef
    Alpert P (2006) The advantages and disadvantages of being introduced. Biol Invasions 8:1523–1534CrossRef
    Barrett SH (1992) Applied population biology. Springer, New York
    Branchiccela B, Aguirre C, Parra G et al (2014) Genetic changes in Apis mellifera after 40 years of Africanization. Apidologie 45:752–756CrossRef
    Cai Y-W, Cheng X-Y, Xu R-M et al (2008) Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions. Insect Sci 15:291–301CrossRef
    Charlesworth B (1996) Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res 68:131–149CrossRef PubMed
    Cooper H, Hedges LV (1994) The handbook of research synthesis. Russel Sage Foundation, New York
    DeHeer CJ, Vargo EL (2008) Strong mitochondrial DNA similarity but low relatedness at microsatellite loci among families within fused colonies of the termite Reticulitermes flavipes. Insectes Soc 55:190–199CrossRef
    Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRef PubMed
    Downie DA (2002) Locating the sources of an invasive pest, grape phylloxera, using a mitochondrial DNA gene genealogy. Mol Ecol 11:2013–2026CrossRef PubMed
    Elton CS (1958) The ecology of invasions by animals and plants. Springer, New YorkCrossRef
    Facon B, Genton BJ, Shykoff J et al (2006) A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol Evol 21:130–135CrossRef PubMed
    Fitzpatrick BM, Fordyce JA, Niemiller ML et al (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253CrossRef
    Fournier D, Dubois D, Aron S (2008) Isolation and characterization of microsatellite loci from the invasive ant Pheidole megacephala. Mol Ecol Resour 8:919–922CrossRef PubMed
    Gasperi G, Bonizzoni M, Gomulski LM et al (2002) Genetic differentiation, gene flow and the origin of infestations of the medfly, Ceratitis Capitata. Genetica 116:125–135CrossRef PubMed
    Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285CrossRef PubMed
    Hanna C, Cook E, Thompson A et al (2014) Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica. Biol Invasions 16:283–294CrossRef
    Hassan M, Harmelin-Vivien M, Bonhomme F (2003) Lessepsian invasion without bottleneck: example of two rabbitfish species (Siganus rivulatus and Siganus luridus). J Exp Mar Biol Ecol 291:219–232CrossRef
    Henshaw MT, Kunzmann N, Vanderwoude C et al (2005) Population genetics and history of the introduced fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), in Australia. Aust J Entomol 44:37–44CrossRef
    Hölldobler B, Wilson EO (1990) The ants. The Belknap Press of Harvard University Press, CambridgeCrossRef
    Holldobler B, Michener CD, Markl H (1980) Evolution of social behaviour: hypotheses and empirical tests. Verlag Chemie, Weinheim
    Holway DA, Suarez AV, Case TJ (1998) Loss of intraspecific aggression in the success of a widespread invasive social insect. Science 282:949–952CrossRef PubMed
    Human KG, Gordon DM (1997) Effects of argentine ants on invertebrate biodiversity in Northern California. Conserv Biol 11:1242–1248CrossRef
    Jones CM, Brown MJF (2014) Parasites and genetic diversity in an invasive bumblebee. J Anim Ecol 83:1428–1440CrossRef PubMed PubMedCentral
    Kanarek AR, Webb CT (2010) Allee effects, adaptive evolution, and invasion success. Evol Appl 3:122–135CrossRef PubMed PubMedCentral
    Keever C, Nieman C, Ramsay L et al (2013) Microsatellite population genetics of the emerald ash borer (Agrilus planipennis Fairmaire): comparisons between Asian and North American populations. Biol Invasions 15:1537–1559CrossRef
    Keller L (1996) Social evolution in ants. Princeton University Press, Princeton, pp 142–143
    Keller L, Passera L (1989) Influence of the number of queens on nestmate recognition and attractiveness of queens to workers in the Argentine ant, Iridomyrmex humilis (Mayr). Anim Behav 37(5):733–740CrossRef
    Kuehn R, Schroeder W, Pirchner F et al (2003) Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus). Conserv Genet 4:157–166CrossRef
    Kunwar RM (2003) Invasive alien plants and Eupatorium: biodiversity and livelihood. Himal J Sci 1:129–133
    Margaritopoulos JT, Gondosopoulos B, Mamuris Z et al (2007) Genetic variation among Mediterranean populations of Sesamia nonagrioides (Lepidoptera: Noctuidae) as revealed by RFLP mtDNA analysis. Bull Entomol Res 97:299–308CrossRef PubMed
    Mok H-F, Stepien CC, Kaczmarek M et al (2014) Genetic status and timing of a weevil introduction to Santa Cruz Island. Galpagos J Hered 105:365–380CrossRef PubMed
    Omondi BA, van den Berg J, Masiga D et al (2014) Molecular markers reveal narrow genetic base and culturing-associated genetic drift in Teretrius nigrescens Lewis populations released for the biological control of the larger grain borer in Africa. Bull Entomol Res 104:143–154CrossRef PubMed
    Perdereau E, Dedeine F, Christidès J-P et al (2010) Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J Chem Ecol 36:1189–1198CrossRef PubMed
    Perdereau E, Dedeine F, Christidès JP et al (2011) Competition between invasive and indigenous species: an insular case study of subterranean termites. Biol Invasions 13:1457–1470CrossRef
    Perdereau E, Bagneres AG, Bankhead-Dronnet S et al (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol Ecol 22:1105–1119CrossRef PubMed
    Petit RJ, Bialozyt R, Garnier-Géré P et al (2004) Ecology and genetics of tree invasions: from recent introductions to Quaternary migrations. For Ecol Manage 197:117–137CrossRef
    Puillandre N, Dupas S, Dangles O et al (2008) Genetic bottleneck in invasive species: the potato tuber moth adds to the list. Biol Invasions 10:319–333CrossRef
    Qin R-M, Zheng Y-L, Valiente-Banuet A et al (2013) The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol 197:979–988CrossRef PubMed
    Rosenberg MS, Adams DC, Gurevitch J (2000) MetaWin: statistical software for meta-analysis. Version 2.0. Sinauer Associates, Sunderland, MA
    Ross KG, Shoemaker DD (2008) Estimation of the number of founders of an invasive pest insect population: the fire ant Solenopsis invicta in the USA. Proc R Soc Lond B Biol Sci 275:2231–2240CrossRef
    Ross KG, Krieger MJB, Keller L et al (2007) Genetic variation and structure in native populations of the fire ant Solenopsis invicta: evolutionary and demographic implications. Biol J Linn Soc 92:541–560CrossRef
    Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRef
    Stewart G (2010) Meta-analysis in applied ecology. Biol Lett 6:78–81CrossRef PubMed PubMedCentral
    Suarez A, Tsutsui N, Holway D et al (1999) Behavioral and genetic differentiation between native and introduced populations of the argentine ant. Biol Invasions 1:43–53CrossRef
    Taylor AC, Cooper DW (1999) Microsatellites identify introduced New Zealand tammar wallabies (Macropus eugenii) as an ‘extinct’ taxon. Anim Conserv 2:41–49
    Team RCD (2013) R: a language and environment for statistical computing. Foundation for Statistical Computing, v.3.0.2. edn
    Tsuchida K, Kudo K, Ishiguro N (2014) Genetic structure of an introduced paper wasp, Polistes chinensis antennalis (Hymenoptera, Vespidae) in New Zealand. Mol Ecol 23:4018–4034CrossRef PubMed
    Tsutsui ND, Suarez AV, Holway DA et al (2000) Reduced genetic variation and the success of an invasive species. Proc Natl Acad Sci 97:5948–5953CrossRef PubMed PubMedCentral
    Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Change Biol 17:3478–3485CrossRef
    Vargo EL (2003a) Genetic Structure of Reticulitermes flavipes and R. virginicus (Isoptera: Rhinotermitidae) colonies in an urban habitat and tracking of colonies following treatment with hexaflumuron bait. Environ Entomol 32:1271–1282CrossRef
    Vargo EL (2003b) Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution 57:2805–2818CrossRef PubMed
    Vargo EL, Husseneder C, Woodson D et al (2006) Genetic analysis of colony and population structure of three introduced populations of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in the Continental United States. Environ Entomol 35:151–166CrossRef
    Wilson EO (1971) The insect societies. Belknap, Cambridge
    Xu H, Ding H, Li M et al (2006) The distribution and economic losses of alien species invasion to China. Biol Invasions 8:1495–1500CrossRef
    Yu X, He T, Zhao J et al (2014) Invasion genetics of Chromolaena odorata (Asteraceae): extremely low diversity across Asia. Biol Invasions 16:2351–2366CrossRef
  • 作者单位:Daifeng Cheng (1)
    Guangwen Liang (1)
    Yijuan Xu (1)

    1. Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, 510642, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Ecology
    Hydrobiology
    Zoology
    Forestry
  • 出版者:Springer Netherlands
  • ISSN:1573-1464
文摘
Factors promoting the invasion success of introduced populations have been receiving increased attention in studies of biological invasions. Previous reports have indicated that successful invasions may be attributable to reduced genetic diversity in the invasive species. However, there is large variation in the magnitude and direction of the impact of exotic species that have remained unexplained. Here, we present a structured meta-analysis of papers investigating the genetic diversity of native and introduced populations of exotic insects using nuclear microsatellites and mitochondrial DNA sequences. The results indicate that invasion by exotic insects had an overall reducing effect on the genetic diversity of the invading population, with nonzero effect sizes for the number of alleles (NA), observed heterozygosity (Ho), expected heterozygosity (He) and nucleotide diversity (Nd). However, when analyzing different orders (e.g., Lepidoptera, Hemiptera), the effect sizes of NA, Ho and Nd in Lepidoptera were found to bracket zero, as did the effect size of He in Hemiptera. These results suggest an asymmetric reduction in the genetic diversity of introduced populations of exotic insects, indicating diverse mechanisms underlying their successful invasion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700