用户名: 密码: 验证码:
A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling
详细信息    查看全文
  • 作者:Guangyuan Ren ; Yunan Li ; Zhaoyan Guo ; Guozheng Xiao ; Ying Zhu ; Liming Dai…
  • 关键词:graphene ; cobalt ; polypyrrole ; oxygen reduction reaction ; electrocatalysts ; ball milling
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:8
  • 期:11
  • 页码:3461-3471
  • 全文大小:2,656 KB
  • 参考文献:[1]Steele, B. C. H.; Heinze, A. Materials for fuel-cell technologies. Nature 2001, 2, 345–352.CrossRef
    [2]Service, R. F. Shrinking fuel cells promise power in your pocket. Science 2002, 2, 1222–1224.CrossRef
    [3]Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 2011, 2, 1238–1254.CrossRef
    [4]Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 2, 1212–1213.CrossRef
    [5]Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 2, 2433–2437.CrossRef
    [6]Wen, Z. H.; Ci, S. Q.; Zhang, F.; Feng, X. L.; Cui, S. M.; Mao, S. L.; Luo, S. M.; He, Z.; Chen, J. H. Nitrogen-enriched core-shell structured Fe/Fe3C-C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 2012, 2, 1399–1404.CrossRef
    [7]Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Ironbased catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 2, 71–74.CrossRef
    [8]Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 2, 2076–2083.
    [9]Wang, B. Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 2005, 2, 1–15.
    [10]Bashyam, R.; Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 2, 63–66.CrossRef
    [11]Seufert, K.; Bocquet, M. L.; Auwarter, W.; Weber-Bargioni, A.; Reichert, J.; Lorente, N.; Barth, J. V. Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation. Nat. Chem. 2011, 2, 114–119.CrossRef
    [12]Tang, H.; Yin, H.; Wang, J.; Yang, N.; Wang, D.; Tang, Z. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 2, 5585–5589.CrossRef
    [13]Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. Highperformance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 2, 443–447.CrossRef
    [14]Yuan, X.; Zeng, X.; Zhang, H.; Ma, Z.; Wang, C. Improved performance of proton exchange membrane fuel cells with P-toluenesulfonic acid-doped Co PPy/C as cathode electrocatalyst. J. Am. Chem. Soc. 2010, 2, 1754–1755.CrossRef
    [15]Xu, J. B.; Gao, P.; Zhao, T. S. Non-precious Co3O4 nanorod electrocatalyst for oxygen reduction reaction in anionexchange membrane fuel cells. Energy Environ. Sci. 2012, 2, 5333–5339.CrossRef
    [16]Jiang, C. C.; Guo, Z. Y.; Zhu, Y.; Liu, H.; Wan, M. X.; Jiang, L. Shewanella-mediated biosynthesis of manganese oxide micro-/nanocubes as efficient electrocatalysts for the oxygen reduction reaction. ChemSusChem 2015, 2, 158–163.CrossRef
    [17]Zhou, W.; Ge, L.; Chen, Z. G.; Liang, F.; Xu, H. Y.; Motuzas, J.; Julbe, A.; Zhu, Z. Amorphous iron oxide decorated 3D heterostructured electrode for highly efficient oxygen reduction. Chem. Mater. 2011, 2, 4193–4198.CrossRef
    [18]Lee, J. S.; Park, G. S.; Lee, H. I.; Kim, S. T.; Cao, R. G.; Liu, M. L.; Cho, J. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Lett. 2011, 2, 5362–5366.CrossRef
    [19]Tian, G. L.; Zhang, Q.; Zhang, B. S.; Jin, Y. G.; Huang, J. Q.; Su, D. S.; Wei, F. Toward full exposure of “active sites”: Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity. Adv. Funct. Mater. 2014, 2, 5956–5961.CrossRef
    [20]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 2, 666–669.CrossRef
    [21]Claire, B.; Song, J. M.; Li, X. B.; Wu, X. S.; Nate, B.; Cé cile, N.; Didier, M.; Li, T. B.; Joanna, H.; Alexei, N. M.; Edward H. C.; Phillip, N. F.; Walt, A. H. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 2, 1191–1196.
    [22]Neto, A. H. C. The electronic properties of graphene. Rev. Mod. Phys. 2009, 2, 109–162.CrossRef
    [23]Sasha, S.; Dmitriy, A. D.; Geoffrey, H. B. D.; Kevin, M. K.; Eric, J. Z.; Eric, A. S.; Richard, D. P.; SonBinh, T. N.; Rodney, S. R. Graphene-based composite materials. Nature 2006, 2, 282–286.
    [24]Geng, D. S.; Chen, Y.; Chen, Y. G.; Li, Y. L.; Li, R. Y.; Sun, X. L.; Ye, S. Y.; Knights, S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 2011, 2, 760–764.CrossRef
    [25]Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Mü llen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 2, 9082–9085.CrossRef
    [26]Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 2, 780–786.CrossRef
    [27]Li, S.; Wu, D. Q.; Cheng, C.; Wang, J. Z.; Zhang, F.; Su, Y. Z.; Feng, X. L. Polyaniline-coupled multifunctional 2D metal oxide/hydroxide graphene nanohybrids. Angew. Chem., Int. Ed. 2013, 2, 12105–12109.CrossRef
    [28]Jiang, S.; Zhu, C. Z.; Dong, S. J. Cobalt and nitrogencofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity. J. Mater. Chem. 2013, 2, 3593–3599.CrossRef
    [29]Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 2, 16136–16137.CrossRef
    [30]Lin, T.; Tang, Y.; Wang, Y.; Bi, H.; Liu, Z.; Huang, F.; Xiec, X.; Jiang, M. Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene-sulfur composites for high-performance lithium-sulfur batteries. Energy Environ. Sci. 2013, 2, 1283–1290.CrossRef
    [31]Ni, Z. H.; Yu, T.; Lu, Y. H.; Wang, Y. Y.; Feng, Y. P.; Shen, Z. X. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. Acs Nano 2008, 2, 2301–2305.CrossRef
    [32]Zhao, Y. C.; Zhan, L.; Tian, J. N.; Sulian Nie; Ning, Z. Enhanced electrocatalytic oxidation of methanol on Pd/ polypyrrole-graphene in alkaline medium. Electrochim. Acta 2011, 2, 1967–1972.CrossRef
    [33]Bora, C.; Dolui, S. K. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 2012, 2, 923–932.CrossRef
    [34]Collins, P. G. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 2, 1801–1804.CrossRef
    [35]Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J. C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 2, 394–400.CrossRef
    [36]Luo, Z. Q.; Lim, S. H.; Tian, Z. Q.; Shang, J. Z.; Lai, L. F.; MacDonald, B.; Fu, C.; Shen, Z. X.; Yu, T.; Lin, J. Y. Pyridinic N doped graphene: Synthesis, electronic structure, and electrocatalytic property. J. Mater. Chem. 2011, 2, 8038–8044.CrossRef
    [37]Song, S. G.; Xue, Y. H.; Feng, L. F.; Elbatal, H.; Wang, P. S.; Moorefield, C. N.; Newkome, G. R.; Dai, L. M. Reversible self-assembly of terpyridine-functionalized graphene oxide for energy conversion. Angew. Chem., Int. Ed. 2014, 2, 1415–1419.CrossRef
    [38]Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Spaceconfinement- induced synthesis of pyridinic- and pyrrolicnitrogen- doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 2, 11755–11759.CrossRef
    [39]Unni, S. M.; Devulapally, S.; Karjule, N.; Kurungot, S. Graphene enriched with pyrrolic coordination of the doped nitrogen as an efficient metal-free electrocatalyst for oxygen reduction. J. Mater. Chem. 2012, 2, 23506–23513.CrossRef
    [40]Ziegelbauer, J. M.; Tim, S. O.; Svitlana, P.; Faisal, A.; Cherno, J.; Plamen, A.; Mukerjee, S. Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications. J. Phys. Chem. C 2008, 2, 8839–8849.CrossRef
    [41]Prakash, D.; Masuda, Y.; Sanjeeviraja, C. Structural electrical and electrochemical studies of LiCoVO4 cathode material for lithium rechargeable batteries. Powder Technol. 2013, 2, 454–459.CrossRef
  • 作者单位:Guangyuan Ren (1) (2)
    Yunan Li (1)
    Zhaoyan Guo (1)
    Guozheng Xiao (1)
    Ying Zhu (1)
    Liming Dai (3)
    Lei Jiang (1)

    1. Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 116023, China
    2. School of Chemistry, Biology and Materials Science, East China Institute of Technology, Nanchang, 330013, China
    3. Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
The development of non-precious metal-based electrocatalysts has attracted much research attention because of their high oxygen reduction reaction (ORR) activities, low cost, and good durability. By one-step in-situ ball milling of graphite, pyrrole, and cobalt salt without resorting to high-temperature annealing, we developed a general and facile strategy to synthesize bio-inspired cobalt oxide and polypyrrole coupled with a graphene nanosheet (Co3O4-PPy/GN) complex. Herein, the exfoliation of graphite and polymerization of pyrrole occurred simultaneously during the ball milling process. Meanwhile, the Co3O4 and Co-N x ORR active sites were generated from the oxidized cobalt ion, cobalt-PPy, and the newly exfoliated graphene nanosheets via strong π–π stacking interactions. The resultant Co3O4-PPy/GN catalysts showed efficient electrocatalytic performances for ORRs in an alkaline medium with a positive onset and reduction potentials of−0.102 and−0.196 V (vs. Ag/AgCl), as well as a high diffusion-limited current density (4.471 mA·cm−2), which was comparable to that of a Pt/C catalyst (4.941 mA·cm−2). Compared to Pt/C, Co3O4-PPy/GN catalysts displayed better long-term stability, methanol tolerance, and anti-CO-poisoning effects, which are of great significance for the design and development of advanced non-precious metal electrocatalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700