用户名: 密码: 验证码:
Mechanisms of toxicity of triphenyltin chloride (TPTC) determined by a live cell reporter array
详细信息    查看全文
  • 作者:Guanyong Su (1) (2)
    Xiaowei Zhang (1) (6)
    Jason C. Raine (2)
    Liqun Xing (1)
    Eric Higley (2)
    Markus Hecker (2) (3)
    John P. Giesy (1) (2) (4) (5)
    Hongxia Yu (1) (6)
  • 关键词:High throughput ; NOTEC ; Biomarker ; Correlation network ; Toxicity assessment ; Bacterial ; Genomics ; Organotin
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:20
  • 期:2
  • 页码:803-811
  • 全文大小:361KB
  • 参考文献:1. Anton BP, Raleigh EA (2004) Transposon-mediated linker insertion scanning mutagenesis of the / Escherichia coli McrA endonuclease. J Bacteriol 186(17):5699-707. doi:jb.186.17.5699-5707.2004/jb.186.17.5699-5707.2004 CrossRef
    2. Burnett RM, Darling GD, Kendall DS, Lequesne ME, Mayhew SG, Smith WW, Ludwig ML (1974) Structure of oxidized form of clostridial flavodoxin at 1.9-A resolution—description of flavin mononucleotide binding-site. J Biol Chem 249(14):4383-392
    3. Cima F, Marin MG, Matozzo V, Da Ros L, Ballarin L (1998) Immunotoxic effects of organotin compounds in / Tapes philippinarum. Chemosphere 37(14-5):3035-045 CrossRef
    4. Devries H, Penninks AH, Snoeij NJ, Seinen W (1991) Comparative toxicity of organotin compounds to rainbow-trout ( / Oncorhynchus mykiss) yolk-sac fry. Sci Total Environ 103(2-):229-43 CrossRef
    5. Elad T, Lee JH, Gu MB, Belkin S (2010) Microbial cell arrays. Whole cell sensing systems I: reporter cells and devices 117:85-08. doi:10.1007/10_2009_16
    6. Ema M (2000) Reproductive and developmental toxicity of triphenyltin chloride in rats. Congenit Anomalies 40(1):8-3 CrossRef
    7. Fargasova A (1997) Comparative study of ecotoxicological effect of triorganotin compounds on various biological subjects. Ecotox Environ Saf 36(1):38-2 CrossRef
    8. Fargasova A (2002) Structure-affected algicidal activity of triorganotin compounds. B Environ Contam Tox 69(5):756-62. doi:10.1007/s00128-002-0125-3 CrossRef
    9. Fent K, Muller MD (1991) Occurrence of organotins in municipal waste-water and sewage-sludge and behavior in a treatment-plant. Environ Sci Technol 25(3):489-93 CrossRef
    10. Goel HC, Prasad R (1978) Action of molluscicides on freshly laid eggs of snail / Indoplanorbis exustus (Deshayes). Indian J Exp Biol 16(5):620-22
    11. Goel HC, Srivastava CP (1981) Laboratory evaluation of some molluscicides against french water snails, / Indoplanorbis and Lymnaea species. J Commun Dis 13(2):121-27
    12. Gou N, Onnis-Hayden A, Gu AZ (2010) Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis. Environ Sci Technol 44(15):5964-970. doi:10.1021/es100679f CrossRef
    13. Grote K, Hobler C, Andrade AJM, Grande SW, Gericke C, Talsness CE, Appel KE, Chahoud I (2007) Effects of in utero and lactational exposure to triphenyltin chloride on pregnancy outcome and postnatal development in rat offspring. Toxicology 238:177-85. doi:10.1016/j.tox.2007.05.033 CrossRef
    14. Horiguchi T, Shiraishi H, Shimizu M, Morita M (1997) Effects of triphenyltin chloride and five other organotin compounds on the development of imposex in the rock shell, / Thais clavigera. Environ Pollut 95(1):85-1 CrossRef
    15. Hovijitra NT, Wuu JJ, Peaker B, Swartz JR (2009) Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnol Bioeng 104(1):40-9. doi:10.1002/bit.22385 CrossRef
    16. Keith B, Dong XN, Ausubel FM, Fink GR (1991) Differential induction of 3-deoxy-d -arabino-heptulosonate 7-phosphate synthase genes in / Arabidopsis thaliana by wounding and pathogenic attack. P Natl Acad Sci USA 88(19):8821-825 CrossRef
    17. Lee C-H, Chen IH, Lee C-R, Chi C-H, Tsai M-C, Tsai J-L, Lin H-F (2010) Inhibition of gap junctional intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways. J Occup Med Toxicol 5:17 CrossRef
    18. Liu SM, Hsia MP, Huang CM (2006) Accumulation of butyltin compounds in cobia / Rachycentron canadum raised in offshore aquaculture sites. Sci Total Environ 355(1-):167-75. doi:10.1016/j.scitotenv.2005.02.025 CrossRef
    19. Lobenhofer EK, Cui XG, Bennett L, Cable PL, Merrick BA, Churchill GA, Afshari CA (2004) Exploration of low-dose estrogen effects: identification of No Observed Transcriptional Effect Level (NOTEL). T Toxicol Pathol 32(4):482-92. doi:10.1080/01926230490483324 CrossRef
    20. Luo Z, Wu Q, Zhang M, Li P, Ding Y (2011) Cooperative antimicrobial activity of CdTe quantum dots with rocephin and fluorescence monitoring for / Escherichia coli. J Colloid Interface Sci 362(1):100-06 CrossRef
    21. Nagase H, Hamasaki T, Sato T, Kito H, Yoshioka Y, Ose Y (1991) Structure-activity-relationships for organotin compounds on the red killifish / Oryzias latipes. Appl Organomet Chem 5(2):91-7 CrossRef
    22. Nishida H, Matsui H, Sugiura H, Kitagaki K, Fuchigami M, Inagaki N, Nagai H, Koda A (1990) The immunotoxicity of triphenyltin chloride in mice. J Pharmacobiodyn 13(9):543-48 CrossRef
    23. Onnis-Hayden A, Weng HF, He M, Hansen S, Ilyin V, Lewis K, Gu AZ (2009) Prokaryotic real-time gene expression profiling for toxicity assessment. Environ Sci Technol 43(12):4574-581. doi:10.1021/es803227z CrossRef
    24. Opgen-Rhein R, Strimmer K (2007) From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst Biol 1. doi:10.1186/1752-0509-1-37
    25. Osada S, Nishikawa J, Nakanishi T, Tanaka K, Nishihara T (2005) Some organotin compounds enhance histone acetyltransferase activity. Toxicol Lett 155(2):329-35. doi:10.1016/j.toxlet.2004.10.009 CrossRef
    26. Pardee AB, Jacob F, Monod J (1959) Genetic control and cytoplasmic expression of inducibility in the synthesis of beta-galactosidase by / E. / coli. J Mol Biol 1(2):165-78 CrossRef
    27. Pestlin G, Andres H, Berndt P, Hagmann M, Karl J, Langen H, Zolg W (2005) Diagnosing breast cancer from a liquid sample (e.g. serum, plasma, whole blood or nipple aspirate fluid) derived from an individual comprises measuring the amount of l -3-phosphoserine phosphatase in the sample. WO2005050217-A1
    28. Poynton HC, Loguinov AV, Varshavsky JR, Chan S, Perkins EI, Vulpe CD (2008) Gene expression profiling in / Daphnia magna part I: concentration-dependent profiles provide support for the no observed transcriptional effect level. Environ Sci Technol 42(16):6250-256. doi:10.1021/es8010783 CrossRef
    29. Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635-00. doi:10.1146/annurev.biochem.71.110601.135414 CrossRef
    30. Sano T, Takagi H, Nagano K, Nishikawa M (2010) Analysis of triorganotin compounds in water samples by hydrophilic interaction liquid chromatography-electrospray ionization-mass spectrometry. J Chromatogr A 1217(26):4344-346. doi:10.1016/j.chroma.2010.04.046 CrossRef
    31. Sasaki YF, Sakaguchi M, Yamada H, Miyahara T, Kozuka H (1994) Antagonizing effect of triphenyltin chloride on cytosine-1-β-d -arabinofuranoside potentiation of chromosome aberrations induced by mitomycin C. Mutat Res 323(3):99-04 CrossRef
    32. Schafer U, Beck K, Muller M (1999) Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J Biol Chem 274(35):24567-4574 CrossRef
    33. Shim WJ, Kahng SH, Hong SH, Kim NS, Kim SK, Shim JH (2000) Imposex in the rock shell, / Thais clavigera, as evidence of organotin contamination in the marine environment of Korea. Mar Environ Res 49(5):435-51 CrossRef
    34. Shumilin IA, Bauerle R, Wu J, Woodard RW, Kretsinger RH (2004) Crystal structure of the reaction complex of 3-deoxy-d -arabino-heptulosonate-7-phosphate synthase from / Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation. J Mol Biol 341(2):455-66. doi:10.1016/j.jmb.2004.05.077 CrossRef
    35. Snoeij NJ, Vaniersel AAJ, Penninks AH, Seinen W (1985) Toxicity of triorganotin compounds—comparative in vivo studies with a series of trialkyltin compounds and triphenyltin chloride in male-rats. Toxicol Appl Pharm 81(2):274-86 CrossRef
    36. Su G, Zhang X, Liu H, Giesy JP, Lam MH, Lam PK, Siddiqui MA, Musarrat J, Al-Khedhairy A, Yu H (2012) Toxicogenomic mechanisms of 6-HO-BDE-47, 6-MeO-BDE-47, and BDE-47 in / E. coli. Environ Sci Technol 46(2):1185-191. doi:10.1021/es203212w CrossRef
    37. Thoden JB, Holden HM (2007) Active site geometry of glucose-1-phosphate uridylyltransferase. Protein Sci 16(7):1379-388. doi:10.1110/ps.072864707 CrossRef
    38. Veiga-da-Cunha M, Collet JF, Prieur B, Jaeken J, Peeraer Y, Rabbijns A, Van Schaftingen E (2004) Mutations responsible for 3-phosphoserine phosphatase deficiency. Eur J Hum Genet 12(2):163-66. doi:10.1038/sj.ejhg.5201083 CrossRef
    39. Watson WP, Mutti A (2004) Role of biomarkers in monitoring exposures to chemicals: present position, future prospects. Biomarkers 9(3):211-42. doi:10.1080/13547500400015642 CrossRef
    40. Wong PTS, Chau YK, Kramar O, Bengert GA (1982) Structure–toxicity relationship of tin-compounds on algae. Can J Fish Aquat Sci 39(3):483-88 CrossRef
    41. Yamagishi M, Matsushima H, Wada A, Sakagami M, Fujita N, Ishihama A (1993) Regulation of the / Escherichia- / coli Rmf gene encoding the ribosome modulation factor—growth phase-dependent and growth rate-dependent control. EMBO J 12(2):625-30
    42. Yeon SM, Choi BS, Kim YC (2008) Organization of three rRNA (rrn) operons from / Sphingobium chungbukense DJ77. J Microbiol 46(6):697-03. doi:10.1007/s12275-008-0193-0 CrossRef
    43. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for / Escherichia coli. Nat Methods 3:623-28. doi:10.1038/nmeth895 CrossRef
    44. Zhang XW, Newsted JL, Hecker M, Higley EB, Jones PD, Giesy JP (2009) Classification of chemicals based on concentration-dependent toxicological data using ToxClust. Environ Sci Technol 43(10):3926-932 CrossRef
    45. Zhang XW, Wiseman S, Yu HX, Liu HL, Giesy JP, Hecker M (2011) Assessing the toxicity of naphthenic acids using a microbial genome wide live cell reporter array system. Environ Sci Technol 45(5):1984-991. doi:10.1021/es1032579 CrossRef
  • 作者单位:Guanyong Su (1) (2)
    Xiaowei Zhang (1) (6)
    Jason C. Raine (2)
    Liqun Xing (1)
    Eric Higley (2)
    Markus Hecker (2) (3)
    John P. Giesy (1) (2) (4) (5)
    Hongxia Yu (1) (6)

    1. State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment, Nanjing University, Nanjing, China
    2. Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
    6. School of the Environment, Nanjing University, Nanjing, 210089, China
    3. School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
    4. Department of Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada
    5. Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
  • ISSN:1614-7499
文摘
Triphenyltin chloride (TPTC), which has been extensively used in industry and agriculture, can occur at concentrations in the environment sufficient to be toxic. Here, potency of TPTC to modulate genes in a library containing 1,820 modified green fluorescent protein (GFP)-expressing promoter reporter vectors constructed from Escherichia coli K12 strains was determined. Exposure to TPTC resulted in 22 (fold change-gt;-) or 71 (fold change-gt;-.5) differentially expressed genes. The no observed transcriptional effect (NOTEC) and median transcriptional effect concentrations (TEC50) were determined to be 0.036 and 0.45?mg/L in E. coli. These responses were 1,230 and 97 times more sensitive than the acute median effect concentration (EC50) required to inhibit growth of cells, which demonstrated that this live cell array represents a sensitive method to assess toxic potency of chemicals. The 71 differentially expressed genes could be classified into seven functional groups. Of all the altered genes, three groups which encoded for catalytic enzymes, regulatory proteins, and structural proteins accounted for 28?%, 18?%, and 14?% of all altered genes, respectively. The pattern of differential expression observed during this study was used to elucidate the mechanism of toxicity of TPTC. To determine potential relationships among genes that were changed greater than 2.0-fold by exposure to TPTC, a correlation network analysis was constructed, and four genes were related to aroH, which is the primary target for metabolic regulation of aromatic biosynthesis by feedback inhibition in bacteria. The genes rnC, cld, and glgS were selected as potential biomarkers for TPTC, since their expression was more than 2.0-fold greater after exposure to TPTC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700