用户名: 密码: 验证码:
Ptcorp gene induced by cold stress was identified by proteomic analysis in leaves of Poncirus trifoliata (L.) Raf.
详细信息    查看全文
  • 作者:Guiyou Long (12) longgy63@163.com
    Jinyu Song (2) 301105649@qq.com
    Ziniu Deng (2) deng7009@163.com
    Jie Liu (1) oicqliuliu@163.com
    Liqun Rao (1) raoliqun@163.com
  • 关键词:Poncirus trifoliata – Mass spectrometry – Cold stress – Resistance protein – 2 ; D IEF/SDS ; PAGE – Ptcorp
  • 刊名:Molecular Biology Reports
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:39
  • 期:5
  • 页码:5859-5866
  • 全文大小:367.6 KB
  • 参考文献:1. Kender JW (2003) Citrus. HortScience 38:1043–1047
    2. Shen DX, Wang YY, Chen LG (1997) Genetics and breeding in citrus. Science Press, Beijing, p 289
    3. Cao Q, Kong WF, Wen PF (2004) Plant freezing tolerance and genes express in cold acclimation. Acta Ecol Sin 24:806–811
    4. Cushman JC, Bohnert HJ (2000) Genomics approaches to plant stress. Curr Opin Plant Biol 3:117–124
    5. Breyne P, Zabeau M (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol 4:136–142
    6. Long GY, Liu J, Rao LQ, Deng ZN, Xiong XY, Jiao L (2006) Application of mRNA differentially display technique in gene expression in plants. Sci Res Mon 21:25–27
    7. Jia Y, del Rio HS, Robbins AL, Louzada ES (2004) Cloning and sequence analysis of a low temperature-induced gene from trifoliate orange with unusual pre-mRNA processing. Plant Cell Rep 23:159–166
    8. Cai Q, Moore GA, Guy CL (1995) An unusual group 2 LEA gene family in citrus responsive to low temperature. Plant Mol Biol 29:11–23
    9. Hara M, Wakasugi Y, Ikoma Y, Yano M, Ogawa K, Kuboi T (1999) cDNA sequence and expression of a cold-responsive gene in Citrus unshiu. Biosci Biotechnol Biochem 63:433–437
    10. Porat R, Pavoncello D, Lurie S, McCollum TG (2002) Identification of a grapefruit cDNA belonging to a unique class of citrus dehydrins and characterization of its expression patterns under temperature stress conditions. Physiol Plant 115:598–603
    11. Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the Flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957
    12. Sahin-Cevik M, Moore GA (2006) Identification and expression analysis of cold-regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.) Raf. Plant Mol Biol 62:83–97
    13. Zivy M, de Vienne D (2000) Proteomics: a link between genomics, genetics and physiology. Plant Mol Biol 44:575–580
    14. van Wijk KJ (2001) Challenges and prospects of plant proteomics. Plant Physiol 126:501–508
    15. Salekdeh GH, Siopongco J, Ghareyazie B (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145
    16. Majoul T, Chahed K, Zamiti E, Ouelhazi L, Ghri R (2000) Analysis by two-dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and a salt-sensitive cultivar of wheat. Electrophoresis 21:2562–2565
    17. Ouerghi Z, Remy R, Ouelhazi L, Ayadi A, Brulfert J (2000) Two-dimensional electrophoresis of soluble leaf proteins isolated from two wheat species (Triticum durum and Triticum aestivum) differing in sensitivity towards NaCl. Electrophoresis 21:2487–2491
    18. Hajduch M, Rakwal R, Agrawal GK, Yonekura M, Pretova A (2001) High-resolution two-dimentional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: drastic reductions/fragmentations of ribulose-1, 5-bisphosphate carbosylate/oxygenase and induction of stress-related proteins. Electrophoresis 22:2824–2831
    19. Majoul T, Bancel E, Tribo? E, Hamida JB, Branlard G (2004) Proteomic analysis of the effect of heat stress on hexaploid wheat grain: characterization of heat responsive proteins from total endosperm. Proteomics 3:175–183
    20. Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959
    21. Peck SC, Nuhse TS, Hess D, Iglesias A, Meins F, Boller T (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Pant Cell 13:1467–1475
    22. Konishi H, Ishiguro K, Komatsu S (2001) A Proteomics approach toward understanding blast fungus infection of rice grown under different levels of ritrogen fertilization. Proteomics 1:1162–1171
    23. Long GY, Liu J, Rao LQ (2005) Methods of plant proteome research. J Hunan Agric Univ 31:342–346
    24. Yan SP, Tang ZC, Su WA, Sun WN (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244
    25. Shu LB, Ding W, Wu JH, Feng FJ, Luo LJ, Mei HW (2010) Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals. J Integr Plant Biol 52:981–995
    26. Yelenosky G (1985) Cold hardiness in citrus. Hortic Rev 7:201–238
    27. Liu J, Long GY, Rao LQ, Fan S, Yang H, Peng GP, Jiang FJ, Li LL (2006) Study on the lethal temperature of Poncirus trifoliata Raf. and Citrus reticalata Blanco cv. Miyamoto seedlings with different cold-resistance during growth period. Life Sci Res 10:82–86
    28. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672
    29. He XH, Li YR, Guo YZ, Tang ZP, Li RB (2005) Genetic analysis of 23 mango cultivars collection in Guanxi province revealed by ISSR. Mol Plant Breed 3:829–834
    30. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141
    31. Beck EH, Heim R, Hansen J (2004) Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening. J Biosci 29:449–459
    32. Liu ZQ, Lin DB (1993) The relationship between specific proteins regulated by ABA/GAs and cold resistance of citrus plants. Acta Hortic Sin 20:335–340
    33. Lin DB, Liu ZQ (1994) Effect of cold acclimation and ABA on membrane stability and synthesis of membrane protein in citrus. J Nanjing Agric Univ 17:1–5
    34. Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220
    35. Canto-Canche BB, Meijer AH, Collu G, Verpoorte R, Loyola-Vargas VM (2005) Characterization of a polyclonal antiserum against the monoterpene monooxygenase, geraniol 10-hydroxylase from Catharanthus roseus. J Plant Physiol 162:393–402
    36. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833
    37. McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212
    38. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834
    39. Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Gen Genomics 271:402–415
    40. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci 100:9128–9133
    41. van der Vossen E, Sikkema A, Hekkert BL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species Solanum bulbocastanum confers broad-spectrum resistance to Phytophthora infestans in cultivated potato and tomato. Plant J 36:867–882
    42. Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312–316
    43. Jung EH, Jung HW, Lee SC, Han SW, Heu S, Hwang BK (2004) Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum. Biochim Biophys Acta 1676:211–222
    44. Chini A, Grant JJ, Seki M, Shinozaki K, Loake GJ (2004) Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant J 38:810–822
  • 作者单位:1. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 Hunan, China2. National Center for Citrus Improvement, Changsha, 410128 Hunan, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Animal Anatomy, Morphology and Histology
    Animal Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-4978
文摘
A proteomic approach was employed to investigate the cold stress-responsive proteins in trifoliate orange (Poncirus trifoliata (L.) Raf.), which is a well-known cold tolerant citrus relative and widely used as rootstock in China. Two-year-old potted seedlings were exposed to freezing temperature (?6°C) for 50 min (nonlethal) and 80 min (lethal), and the total proteins were isolated from leaves of the treated plants. Nine differentially accumulated proteins over 2-fold changes in abundance were identified by two-dimensional gel electrophoresis and mass spectrometry. Among these proteins, a resistance protein induced by the nonlethal cold treatment (protein spot #2 from P. trifoliata) was selected as target sequence for degenerated primer design. By using the designed primers, a PCR product of about 700 bp size was amplified from P. trifoliata genomic DNA, which was further cloned and sequenced. A nucleotide sequence of 676 bp was obtained and named Ptcorp. Blast retrieval showed that Ptcorp shared 88% homology with an EST of cold acclimated Bluecrop (Vaccinium corymbosum) library (Accession number: CF811080), indicating that Ptcorp had association with cold acclimation. Semiquantitative RT-PCR analysis demonstrated that Ptcorp gene was up-regulated by cold stress which was consistent with the former result of protein expression profile. As the resistance protein (NBS-LRR disease resistance protein family) gene was up-regulated by cold stress in trifoliate orange and satsuma mandarin, it may imply that NBS-LRR genes might be associated with cold resistance in citrus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700