用户名: 密码: 验证码:
Effects of Ce on Inclusions, Microstructure, Mechanical Properties, and Corrosion Behavior of AISI 202 Stainless Steel
详细信息    查看全文
  • 作者:Guojun Cai ; Changsheng Li
  • 关键词:AISI 202 stainless steel ; Ce ; metamorphic inclusions ; plasticity ; uniform corrosion
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:24
  • 期:10
  • 页码:3989-4009
  • 全文大小:7,377 KB
  • 参考文献:1.P. Seemann, S. Kurz, and P. G眉mpel, Martensite Formation in a New Manganese Alloyed Metastable Austenitic Steel (AISI, 200-Series), J. Alloy. Compd., 2013, 577, p 649鈥?53CrossRef
    2.V. Nemani膷 and J. 艩etina, Evolution of Hydrogen from AISI, 200 Stainless Steel: A Study to Determine Whether It is Diffusion or Recombination Limited Process and Experimental Evidence for Strongly Bound Hydrogen, Vacuum, 2014, 109, p 102鈥?07CrossRef
    3.N. Mazinanian, I. Odnevall Wallinder, and Y. Hedberg, Comparison of the Influence of Citric Acid and Acetic Acid as Stimulant for Acidic Food on the Release of Alloy Constituents from Stainless Steel AISI, 201, J. Food Eng., 2015, 145, p 51鈥?3CrossRef
    4.X. Shan, L.Q. Wei, P. Liu, X.M. Zhang, W.X. Tang, P. Qian, Y. He, and S.F. Ye, Influence of CoO Glass-ceramic Coating on the Anti-oxidation Behavior and Thermal Shock Resistance of 200 Stainless Steel at Elevated Temperature, Ceram. Int., 2014, 40, p 12327鈥?2335CrossRef
    5.W. Chuaiphana and L. Srijaroenpramong, Effect of Welding Speed on Microstructures, Mechanical Properties and Corrosion Behavior of GTA-Welded AISI, 201 Stainless Steel Sheets, J. Mater. Process. Tech., 2014, 214, p 402鈥?08CrossRef
    6.H.S. Luo and C. Zhao, Low Temperature Salt Bath Hardening of AISI, 201 Austenitic Stainless Steel, Phys. Procedia, 2013, 50, p 38鈥?2CrossRef
    7.M. Behpour, S.M. Ghoreishi, N. Soltani, and M. Salavati-Niasari, The Inhibitive Effect of some Bis-N, S-Bidentate Schiff Bases on Corrosion Behaviour of 304 Stainless Steel in Hydrochloric Acid Solution, Corros. Sci., 2009, 51, p 1079鈥?082CrossRef
    8.P. Prabaharan, K. Devendranath Ramkumar, and N. Arivazhagan, Characterization of Microstructure and Mechanical Properties of Super Ni 718 Alloy and AISI, 316L Dissimilar Weldments, J. Mater. Res., 2014, 29, p 3011鈥?023CrossRef
    9.J.C. Zhang, D.Y. Ding, X.L. Xu, Y.J. Gao, G.Z. Chen, W.G. Chen, X.H. You, Y.W. Huang, and J.S. Tang, Effect of Ce Addition on the Mechanical and Electrochemical Properties of a Lithium Battery Shell Alloy, J. Alloy. Compd., 2014, 617, p 665鈥?69CrossRef
    10.S.H. Jeon, D.H. Hur, H.J. Kim, and Y.S. Park, Effect of Ce Addition on the Precipitation of Deleterious Phases and the Associated Intergranular Corrosion Resistance of 27Cr-7Ni Hyper Duplex Stainless Steels, J. Alloy. Compd., 2015, 90, p 313鈥?22
    11.K.L. Wang, Y.M. Zhu, Q.B. Zhang, and M.L. Sun, Effect of Rare Earth Cerium on the Microstructure and Corrosion Resistance of Laser Cladded Nickel-Base Alloy Coatings, J. Mater. Process. Technol., 1997, 63, p 563鈥?67CrossRef
    12.M.A. Arenas, J.J. de Damborenea, A. Medrano, J.A. Garc铆a, and R. Rodr铆guez, Corrosion Behaviour of Rare Earth Ion-Implanted Hot-Dip Galvanised Steel, Surf. Coat. Technol., 2002, 158, p 615鈥?19CrossRef
    13.S.A. Park, S.H. Lee, and J.G. Kim, Effect of Chromium on the Corrosion Behavior of Low Alloy Steel in Sulfuric Acid, Met. Mater. Int., 2012, 18, p 975鈥?87CrossRef
    14.A.M. Lazar, W.P. Yespica, S. Marcelin, N. P茅b猫re, D. Sam茅lor, C. Tendero, and C. Vahlas, Corrosion Protection of 304L Stainless Steel by Chemical Vapor Deposited Alumina Coatings, Corros. Sci., 2014, 81, p 125鈥?31CrossRef
    15.S. MajidGhahari, A.J. Davenport, T. Rayment, T. Suter, J.P. Tinnes, C. Padovani, J.A. Hammons, M. Stampanoni, F. Marone, and R. Mokso, In Situ Synchrotron X-ray Micro-Tomography Study of Pitting Corrosion in Stainless Steel, Corros. Sci., 2011, 53, p 2684鈥?687CrossRef
    16.H.B. Zhang and Y. Zuo, The Improvement of Corrosion Resistance of Ce Conversion Films on Aluminum Alloy by Phosphate Post-Treatment, Appl. Surf. Sci., 2008, 254, p 4930鈥?935CrossRef
    17.S.K. Putatunda, A.V. Singar, R. Tackett, and G. Lawes, Development of a High Strength High Toughness Ausferritic Steel, Mater. Sci. Eng. A, 2009, 513鈥?14, p 329鈥?39CrossRef
    18.J. Yang, D.N. Zou, X.M. Li, and Z.Z. Du, Effect of Rare Earth on Microstructures and Properties of High Speed Steel with High Carbon Content, J. Iron Steel Res. Int., 2007, 14, p 47鈥?9CrossRef
    19.R.M. Wang, Y.G. Song, and Y.F. Han, Effect of Rare Earth on the Microstructures and Properties of a Low Expansion Superalloy, J. Alloy. Compd., 2000, 311, p 60鈥?4CrossRef
    20.F.F. Hao, B. Liao, D. Li, T. Dan, X.J. Ren, Q.X. Yang, and L.G. Liu, Effects of Rare Earth Oxide on Hardfacing Metal Microstructure of Medium Carbon Steel and its Refinement Mechanism, J. Rare Earth., 2011, 29, p 609鈥?13CrossRef
    21.X.L. Li, S.M. He, X.T. Zhou, Y. Zou, Z.J. Li, A.G. Li, and X.H. Yu, Effects of Rare Earth Yttrium on Microstructure and Properties of Ni-16Mo-7Cr-4Fe Nickel-based Superalloy, Mater. Charact., 2014, 95, p 171鈥?79CrossRef
    22.Y.S. Yin, S. Cheng, S.G. Chen, J.T. Tian, T. Liu, and X.T. Chang, Microbially Influenced Corrosion of 303 Stainless Steel by Marine Bacterium Vibrio Natriegens: (II) Corrosion Mechanism, Mater. Sci. Eng. C, 2009, 29, p 756鈥?60CrossRef
    23.R.G. Duarte, A.S. Castela, R. Neves, L. Freire, and M.F. Montemor, Corrosion Behavior of Stainless Steel Rebars Embedded in Concrete: An Electrochemical Impedance Spectroscopy Study, Electrochim. Acta, 2014, 124, p 218鈥?24CrossRef
    24.Z.X. Yuan, Z.S. Yu, P. Tan, and S.H. Song, Effect of Rare Earths on the Carburization of Steel, Mater. Sci. Eng. A, 1999, 267, p 162鈥?66CrossRef
    25.A.T. Krawczynska, M. Gloc, and K. Lublinska, Intergranular Corrosion Resistance of Nanostructured Austenitic Stainless Steel, J. Mater. Sci., 2013, 48, p 4517鈥?523CrossRef
    26.Y.H. Yoo, Y.S. Choi, J.G. Kim, and Y.S. Park, Effects of Ce, La and Ba Addition on the Electrochemical Behavior of Super Duplex Stainless Steels, Corros. Sci., 2010, 52, p 1123鈥?129CrossRef
    27.X. Liu, J.C. Yang, L. Yang, and X.Z. Gao, Effect of Ce on Inclusions and Impact Property of 2Cr13 Stainless Steel, J. Iron Steel Res. Int., 2010, 17, p 59鈥?4CrossRef
    28.Y.J. Kang, J.H. Jang, J.H. Park, and C.H. Lee, Influence of Ti on Non-Metallic Inclusion Formation and Acicular Ferrite Nucleation in High-Strength Low-Alloy Steel Weld Metals, Met. Mater. Int., 2014, 20, p 119鈥?27CrossRef
    29.J. Alcala, A.C. Barone, and M. Anglada, The Influence of Plastic Hardening on Surface Deformation Modes around Vickers and Spherical Indents, Acta Mater., 2000, 48, p 3451鈥?464CrossRef
    30.S.C. Yu, Q.H. Zhu, S.Q. Wu, Y.J. Gong, Y.S. Gong, M.S. Lian, G. Ye, and Y.J. Cheng, Microstructure of Steel 5Cr2lMn9Ni4N Alloyed by Rare Earth, J. Iron Steel Res. Int., 2006, 13, p 40鈥?4CrossRef
    31.M. Mehdipour, R. Naderi, and B.P. Markhali, Electrochemical Study of Effect of the Concentration of Azole Derivatives on Corrosion Behavior of Stainless Steel in H2SO4, Prog. Org. Coat., 2014, 77, p 1761鈥?767CrossRef
    32.J.L. Xu, F. Liu, F.P. Wang, D.Z. Yu, and L.C. Zhao, The Corrosion Resistance Behavior of Al2O3 Coating Prepared on NiTi Alloy by Micro-Arc Oxidation, J. Alloy. Compd., 2009, 472, p 276鈥?80CrossRef
    33.T.L. Sudesh, L. Wijesinghe, and D.J. Blackwood, Photocurrent and Capacitance Investigations into the Nature of the Passive Films on Austenitic Stainless Steels, Corros. Sci., 2008, 50, p 23鈥?4CrossRef
    34.G.H. Wu, C.Y. Wang, Q. Zhang, and P.C. Kang, Characterization of Ce Conversion Coating on Gr-f/6061Al Composite Surface for Corrosion Protection, J. Alloy. Compd., 2008, 461, p 389鈥?94CrossRef
    35.P.C. Okafor and Y.G. Zheng, Synergistic Inhibition Behaviour of Methylbenzyl Quaternary Imidazoline Derivative and Iodide Ions on Mild Steel in H2SO4 Solutions, Corros. Sci., 2009, 51, p 850鈥?59CrossRef
    36.X.H. Li, S.D. Deng, and H. Fu, Inhibition of the Corrosion of Steel in HCl, H2SO4 Solutions by Bamboo Leaf Extract, Corros. Sci., 2012, 62, p 163鈥?75CrossRef
    37.J.L. Yi and X.M. Zhang, Effects of Ce on Microstructure and Corrosion Resistance of Mg-9Gd-4Y-1Nd-0.6Zr Alloy, Proc. Eng., 2012, 27, p 815鈥?22CrossRef
    38.Y.T. Ma, Y. Li, and F.H. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51, p 997鈥?006CrossRef
    39.Q. Qu, Z.Z. Hao, L. Li, W. Bai, Y.J. Liu, and Z.T. Ding, Synthesis and Evaluation of Tris-Hydroxymethyl-(2-Hydroxybenzylidenamino)-Methane as a Corrosion Inhibitor for Cold Rolled Steel in Hydrochloric Acid, Corros. Sci., 2009, 51, p 569鈥?74CrossRef
    40.E. Stoyanova, D. Nikolova, D. Stoychev, P. Stefanov, and T. Marinova, Effect of Al and Ce Oxide Layers Electrodeposited on OC4004 Stainless Steel on its Corrosion Characteristics in Acid Media, Corros. Sci., 2006, 48, p 4037鈥?052CrossRef
  • 作者单位:Guojun Cai (1)
    Changsheng Li (1)

    1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
The sizes and morphologies of nonmetallic inclusions, microhardness, tensile strength, and Charpy impact toughness in AISI 202 stainless steel with different Ce contents were synthetically analyzed by means of SEM, TEM, microhardness tester, and tensile and Charpy impact tests. Effects of Ce addition on the corrosion behavior were investigated in 5 wt.% H2SO4 solution for different periods of time through measuring AC impedance. The EIS measurements indicate that the steels with Ce addition exhibit higher R p values than those without Ce, which illustrates the relative resistance to uniform corrosion is accompanied by an increasing Ce addition. Ce addition to AISI 202 stainless steel improves its uniform corrosion resistance owing to metamorphic inclusions and the improvement of electrode potential in matrix. Upon increasing Ce addition, the indentation morphology of samples transfers from sink-in types to pile-up types, explaining good machinability of steels containing Ce. It is witnessed from the fracture mode that Ce refines the grain size of steels, significantly increasing the strength; in the meantime, its plasticity is improved, thereby solving the contradiction between the strength and the plasticity of steels. It is concluded that AISI 202 stainless steel with 0.016 wt.% Ce addition in the mass fraction has the best mechanical properties and the uniform corrosion resistance. Keywords AISI 202 stainless steel Ce metamorphic inclusions plasticity uniform corrosion

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700