用户名: 密码: 验证码:
Recognition of riboflavin and the capsular polysaccharide of Haemophilus influenzae type b by antibodies generated to the haptenic epitope D-ribitol
详细信息    查看全文
  • 作者:G. Ravi (1) <br> Yeldur P. Venkatesh (1) <br>
  • 关键词:Haemophilus influenzae type b ; Immunogenicity ; Polyribosyl ribitol phosphate ; Reductive amination ; Ribitol–specific antibodies ; Riboflavin
  • 刊名:Glycoconjugate Journal
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:31
  • 期:3
  • 页码:247-258
  • 全文大小:2,954 KB
  • 参考文献:1. Huck, J.H.J., Roos, B., Jakobs, C., van der Knaap, M.S., Verhoeven, N.M.: Evaluation of pentitol metabolism in mammalian tissues provides new insight into disorders of human sugar metabolism. Mol. Genet. Metab. 82, 231-37 (2004) blank" title="It opens in new window">CrossRef <br> 2. Shetty, H.U., Holloway, H.W., Rapoport, S.I.: Capillary gas chromatography combined with ion trap detection for quantitative profiling of polyols in cerebrospinal fluid and plasma. Anal. Biochem. 224, 279-85 (1995) bio.1995.1041" target="_blank" title="It opens in new window">CrossRef <br> 3. Huck, J.H.J., Verhoeven, N.M., Struys, E.A., Salomons, G.S., Jakobs, C., van der Knaap, M.S.: Ribose-5-phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am. J. Hum. Genet. 74, 745-51 (2004) blank" title="It opens in new window">CrossRef <br> 4. Wamelink, M.M.C., Smith, D.E.C., Jakobs, C., Verhoeven, N.M.: Analysis of polyols in urine by liquid chromatography-tandem mass spectrometry: a useful tool for recognition of inborn errors affecting polyol metabolism. J. Inherit. Metab. Dis. 28, 951-63 (2005) blank" title="It opens in new window">CrossRef <br> 5. Duke, J.A.: Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, Boca Raton (1992) <br> 6. Pfyffer, G.E., Rast, D.M.: Systematic distribution of ribitol in the fungi. New Phytol. 85, 163-68 (1980) b04456.x" target="_blank" title="It opens in new window">CrossRef <br> 7. Powers, H.J.: Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr. 77, 1352-360 (2003) <br> 8. Swoboda, J.G., Campbell, J., Meredith, T.C., Walker, S.: Wall teichoic acid function, biosynthesis, and inhibition. ChemBiochem. 11, 35-5 (2010) <br> 9. Baur, S., Marles-Wright, J., Buckenmaier, S., Lewis, R.J., Vollmer, W.: Synthesis of CDP-activated ribitol for teichoic acid precursors in / Streptococcus pneumoniae. J. Bacteriol. 191, 1200-210 (2009) blank" title="It opens in new window">CrossRef <br> 10. Lindberg, A.A.: Glycoprotein conjugate vaccines. Vaccine 17(Suppl 2), S28–S36 (1999) blank" title="It opens in new window">CrossRef <br> 11. Venkatesh, Y.P., Hegde, V.L.: A hypothesis for the mechanism of immediate hypersensitivity to mannitol. Allergol. Int. 52, 165-70 (2003) blank" title="It opens in new window">CrossRef <br> 12. Venkatesh, Y.P., Sreenath, K.: Allergenicity and immunogenicity of sugar alcohol sweeteners. In: Villanueva, C.J. (ed.) Immunogenicity, pp. 217-50. Nova Biomedical, Hauppauge (2011) <br> 13. Schwartz, B.A., Gray, G.R.: Proteins containing reductively aminated disaccharides. Synthesis and chemical characterization. Arch. Biochem. Biophys. 181, 542-49 (1977) blank" title="It opens in new window">CrossRef <br> 14. Gray, G.R.: Antibodies to carbohydrates: preparation of antigens by coupling carbohydrates to proteins by reductive amination with cyanoborohydride. Methods Enzymol. 50, 155-60 (1978) blank" title="It opens in new window">CrossRef <br> 15. Roy, R., Katzenellenbogen, E., Jennings, H.J.: Improved procedures for the conjugation of oligosaccharides to protein by reductive amination. Can. J. Biochem. Cell. Biol. 62, 270-75 (1984) blank" title="It opens in new window">CrossRef <br> 16. Hayward, L.D., Angyal, S.J.: A symmetry rule for the circular dichroism of reducing sugars, and the proportion of carbonyl forms in aqueous solutions thereof. Carbohydr. Res. 51, 13-0 (1977) blank" title="It opens in new window">CrossRef <br> 17. Maier, G.D., Kusiak, J.W., Bailey, J.M.: The study of the mutarotation of D-glucose, D-fructose, and D-ribose by use of their circular dichroism. Carbohydr. Res. 53, 1-1 (1977) blank" title="It opens in new window">CrossRef <br> 18. Ricker, R., Stollar, B.D.: Antibodies reactive with specific folic acid determinants. Biochemistry 6, 2001-005 (1967) bi00859a018" target="_blank" title="It opens in new window">CrossRef <br> 19. Layton, G.T., Stanworth, D.R., Amos, H.E.: The specificity of murine polyclonal and monoclonal antibodies to the haptenic drug chlorhexidine induced by chlorine-generated chlorhexidine-protein conjugates. Clin. Exp. Immunol. 69, 157-65 (1987) <br> 20. WHO: Recommendations for the production and control of / Haemophilus influenzae type b conjugate vaccines. WHO Technical Report Series, No. 897, Annex 1, pp. 27-0. World Health Organization, Geneva. biologicals/publications/trs/areas/vaccines/influenza/WHO_TRS_897_A1.pdf" class="a-plus-plus">http://www.who.int/biologicals/publications/trs/areas/vaccines/influenza/WHO_TRS_897_A1.pdf (2000). Accessed 15 Feb 2014 <br> 21. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-54 (1976) blank" title="It opens in new window">CrossRef <br> 22. Harris, J.R., Markl, J.: Keyhole limpet hemocyanin (KLH): a biomedical review. Micron 30, 597-23 (1999) blank" title="It opens in new window">CrossRef <br> 23. Sashidhar, R.B., Capoor, A.K., Ramana, D.: Quantitation of epsilon-amino group using amino acids as reference standards by trinitrobenzene sulfonic acid. A simple spectrophotometric method for the estimation of hapten to carrier protein ratio. J. Immunol. Methods 167, 121-27 (1994) blank" title="It opens in new window">CrossRef <br> 24. Habeeb, A.F.: Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem. 14, 328-36 (1966) blank" title="It opens in new window">CrossRef <br> 25. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-85 (1970) blank" title="It opens in new window">CrossRef <br> 26. Zacharius, R.M., Zell, T.E., Morrison, J.H., Woodlock, J.J.: Glycoprotein staining following electrophoresis on acrylamide gels. Anal. Biochem. 30, 148-52 (1969) blank" title="It opens in new window">CrossRef <br> 27. Baldwin, M.A.: Protein identification by mass spectrometry: issues to be considered. Mol. Cell. Proteomics 3, 1- (2004) blank" title="It opens in new window">CrossRef <br> 28. Holladay, S.R., Yang, Z., Kennedy, M.D., Leamon, C.P., Lee, R.J., Jayamani, M., Mason, T., Low, P.S.: Riboflavin-mediated delivery of a macromolecule into cultured human cells. Biochim. Biophys. Acta 1426, 195-04 (1999) blank" title="It opens in new window">CrossRef <br> 29. Howard, G., Kaser, M.: Making and using antibodies. CRC Press, Boca Raton (2006) blank" title="It opens in new window">CrossRef <br> 30. Hawkes, R.: The dot immunobinding assay. Methods Enzymol. 121, 484-91 (1986) blank" title="It opens in new window">CrossRef <br> 31. Tijssen, P.: Practice and theory of enzyme immunoassay. Elsevier, Amsterdam (1985) <br> 32. Stults, N.L., Asta, L.M., Lee, Y.C.: Immobilization of proteins on oxidized crosslinked Sepharose preparations by reductive amination. Anal. Biochem. 180, 114-19 (1989) blank" title="It opens in new window">CrossRef <br> 33. Steinbuch, M., Audran, R.: The isolation of IgG from mammalian sera with the aid of caprylic acid. Arch. Biochem. Biophys. 134, 279-84 (1969) blank" title="It opens in new window">CrossRef <br> 34. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M.: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856-860 (2006) blank" title="It opens in new window">CrossRef <br> 35. Raghava, G.P., Agrewala, J.N.: Method for determining the affinity of monoclonal antibody using non-competitive ELISA: a computer program. J. Immunoassay 15, 115-28 (1994) blank" title="It opens in new window">CrossRef <br> 36. Zhao, H., Ge, M., Zhang, Z., Wang, W., Wu, G.: Spectroscopic studies on the interaction between riboflavin and albumins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 65, 811-17 (2006) <br> 37. Sengupta, A., Sasikala, W.D., Mukherjee, A., Hazra, P.: Comparative study of flavins binding with human serum albumin: a fluorometric, thermodynamic, and molecular dynamics approach. ChemPhysChem 13, 2142-153 (2012) blank" title="It opens in new window">CrossRef <br> 38. Sreenath, K., Venkatesh, Y.P.: Reductively aminated D-xylose-albumin conjugate as the immunogen for generation of IgG and IgE antibodies specific to D-xylitol, a haptenic allergen. Bioconjug. Chem. 18, 1995-003 (2007) bc700175g" target="_blank" title="It opens in new window">CrossRef <br> 39. Sreenath, K., Prabhasankar, P., Venkatesh, Y.P.: Generation of an antibody specific to erythritol, a non-immunogenic food additive. Food Addit. Contam. 23, 861-69 (2006) blank" title="It opens in new window">CrossRef <br> 40. Chappey, O., Debray, M., Niel, E., Scherrmann, J.M.: Association constants of monoclonal antibodies for hapten: heterogeneity of frequency distribution and possible relationship with hapten molecular weight. J. Immunol. Methods 172, 219-25 (1994) blank" title="It opens in new window">CrossRef <br> 41. Hegde, V.L., Venkatesh, Y.P.: Generation of antibodies specific to D-mannitol, a unique haptenic allergen, using reductively aminated D-mannose-bovine serum albumin conjugate as the immunogen. Immunobiology 212, 119-28 (2007) bio.2006.10.002" target="_blank" title="It opens in new window">CrossRef <br> 42. Watson, C.D., Ford, H.C.: High-affinity binding of riboflavin and FAD by immunoglobulins from normal human serum. Biochem. Int. 16, 1067-074 (1988) <br> 43. Kamat, B.P., Seetharamappa, J., Melwanki, M.B.: Spectroscopic studies on the interaction of riboflavin with bovine serum albumin. Indian J. Biochem. Biophys. 41, 173-78 (2004) <br> 44. Zhu, X., Wentworth, P., Kyle, R.A., Lerner, R.A., Wilson, I.A.: Cofactor-containing antibodies: crystal structure of the original yellow antibody. Proc. Natl. Acad. Sci. U. S. A. 103, 3581-585 (2006) blank" title="It opens in new window">CrossRef <br> 45. Cha, G.S., Meyerhoff, M.E.: Solid phase enzyme-linked competitive binding assay for riboflavin. Anal. Biochem. 168, 216-27 (1988) blank" title="It opens in new window">CrossRef <br> 46. Nokubo, M., Ohta, M., Kitani, K., Nagy, I.: Identification of protein-bound riboflavin in rat hepatocyte plasma membrane as a source of autofluorescence. Biochim. Biophys. Acta 981, 303-08 (1989) blank" title="It opens in new window">CrossRef <br> 47. Mangas, A., Cove?as, R., Geffard, K., Geffard, M., Marcos, P., Insausti, R., Glaize, G., Dabadie, M.P.: Riboflavin-like inmunoreactive fibers in the monkey brain. Anat. Embryol. 211, 267-72 (2006) blank" title="It opens in new window">CrossRef <br> 48. Cove?as, R., Mangas, A., Bodet, D., Duleu, S., Marcos, P., Karakas, B., Geffard, M.: Frontiers in vitamin research: new antibodies, new data. Sci. World J. 11, 1226-242 (2011) blank" title="It opens in new window">CrossRef <br> 49. Lorenz, A., Kaldenhoff, R., Hertel, R.: A major integral protein of the plant plasma membrane binds flavin. Protoplasma 221, 19-0 (2003) blank" title="It opens in new window">CrossRef <br> 50. Toyosaki, T., Iwabuchi, M.: New antioxidant protien in seaweed ( / Porphyra yezoensis Ueda). Int. J. Food Sci. Nutr. 60(Suppl 2), 46-6 (2009) blank" title="It opens in new window">CrossRef <br> 51. Macheroux, P., Kappes, B., Ealick, S.E.: Flavogenomics—a genomic and structural view of flavin-dependent proteins. FEBS J. 278, 2625-634 (2011) blank" title="It opens in new window">CrossRef <br>
  • 作者单位:G. Ravi (1) <br> Yeldur P. Venkatesh (1) <br><br>1. Department of Biochemistry and Nutrition, CSIR–Central Food Technological Research Institute, ‘Chaluvamba Vilas- KRS Road, Mysore, 570020, Karnataka State, India <br>
  • ISSN:1573-4986
文摘
D-Ribitol, a five–carbon sugar alcohol, is an important metabolite in the pentose phosphate pathway; it is an integral part of riboflavin (vitamin B2) and cell wall polysaccharides in most Gram-positive and a few Gram-negative bacteria. Antibodies specific to D-ribitol were generated in New Zealand white rabbits by using reductively aminated D-ribose-BSA conjugate as the immunogen. MALDI-TOF and amino group analyses of ribitol-BSA conjugate following 120?h reaction showed ~27-0?mol of ribitol conjugated per mole BSA. The presence of sugar alcohol in the conjugates was also confirmed by an increase in molecular mass and a positive periodic acid–Schiff staining in SDS-PAGE. Caprylic acid precipitation of rabbit serum followed by hapten affinity chromatography on ribitol–KLH–Sepharose CL-6B resulted in pure ribitol–specific antibodies (~45-0?μg/mL). The affinity constant of ribitol antibodies was found to be 2.9?×-07?M? by non-competitive ELISA. Ribitol antibodies showed 100?% specificity towards ribitol, ~800?% cross–reactivity towards riboflavin, 10-5?% cross–reactivity with sorbitol, xylitol and mannitol, and 5-?% cross–reactivity with L-arabinitol and meso-erythritol. The specificity of antibody to ribitol was further confirmed by its low cross-reactivity (0.4?%) with lumichrome. Antibodies to D-ribitol recognized the purified capsular polysaccharide of Haemophilus influenzae type b, which could be specifically inhibited by ribitol. In conclusion, antibodies specific to D-ribitol have been generated and characterized, which have potential applications in the detection of free riboflavin and ribitol in biological samples, as well as identification of cell-surface macromolecules containing ribitol.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700