用户名: 密码: 验证码:
A new augmented immersed finite element method without using SVD interpolations
详细信息    查看全文
  • 作者:Haifeng Ji ; Jinru Chen ; Zhilin Li
  • 关键词:Interface problem ; Piecewise constant coefficient ; Immersed finite element ; Augmented immersed finite element method ; Poisson equation on irregular domain ; Fast poisson solver ; Least squares interpolation using SVD ; 65N15 ; 65N30 ; 35J60
  • 刊名:Numerical Algorithms
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:71
  • 期:2
  • 页码:395-416
  • 全文大小:2,225 KB
  • 参考文献:1.Braess, D.: Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge University Press (2001)
    2.Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)CrossRef MathSciNet
    3.Chang, K., Kwak, D.: Discontinuous bubble scheme for elliptic problems with jumps in the solution. Comput. Methods Appl. Mech. Engrg. 200, 494–508 (2011)CrossRef MathSciNet MATH
    4.Chen, G., Li, Z., Lin, P.: A fast finite difference method for biharmonic equations on irregular domains. Adv. Comput. Math. 29, 113–133 (2008)CrossRef MathSciNet MATH
    5.He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Partial Differential Equations 24, 1265–1300 (2008)CrossRef MathSciNet MATH
    6.He, X., Lin, T., Lin, Y.: A bilinear immersed finite volume element method for the diffusion equation with discontinuous coefficient. Commun. Comput. Phys. 6, 185 (2009)CrossRef MathSciNet
    7.He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model. 8, 284–301 (2011)MathSciNet MATH
    8.Hou, S., Liu, X.: A numerical method for solving variable coefficient elliptic equation with interfaces. J. Comput. Phys. 202, 411–445 (2005)CrossRef MathSciNet MATH
    9.Hou, T., Wu, X., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68, 913–943 (1999)CrossRef MathSciNet MATH
    10.Hou, T., Wu, X., Zhang, Y.: Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation. Commun. Math. Sci. 2, 185–205 (2004)CrossRef MathSciNet MATH
    11.Ito, K., Li, Z., Lai, M.: An augmented method for the Navier-Stokes equations on irregular domains. J. Comput. Phys. 228, 2616–2628 (2009)CrossRef MathSciNet MATH
    12.Swarztrauber, P., Adams, J., Sweet, R.: Fishpack: Efficient Fortran subprograms for the solution of separable elliptic partial differential equations. Available In: http://​www.​netlib.​org/​fishpack/​
    13.Ji, H., Chen, J., Li, Z.: A symmetric and consistent immersed finite element method for interface problems. J. Sci. Comput. doi:10.​1007/​s10915-014-9837-x
    14.Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. Anal. 35, 230–254 (1998)CrossRef MathSciNet MATH
    15.Li, Z., Ito, K.: The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains. Frontiers in Applied Mathematics, vol. 33. SIAM, Philadelphia (2006)CrossRef
    16.Li, Z., Ito, K., Lai, M.: An augmented approach for Stokes equations with a discontinuous viscosity and singular forces. Comput. Fluids 36, 622–635 (2007)CrossRef MathSciNet MATH
    17.Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96, 61–98 (2003)CrossRef MathSciNet MATH
    18.Li, Z., Wang, W., Chern, I., Lai, M.: New formulations for interface problems in polar coordinates. SIAM J. Sci. Comput. 25, 224–245 (2003)CrossRef MathSciNet MATH
    19.Li, Z., Zhao, H., Gao, H.: A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesian grid. J. Comput. Phys. 152, 281–304 (1999)CrossRef MATH
    20.Mayo, A.: The rapid evaluation of volume integrals of potential theory on general regions. J. Comput. Phys. 100, 236–245 (1992)CrossRef MathSciNet MATH
    21.Mayo, A., Greenbaum, A.: Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Sci. Statist. Comput. 13, 101–118 (1992)CrossRef MathSciNet MATH
    22.Nielsen, B.F.: Finite element discretizations of elliptic problems in the presence of arbitrarily small ellipticity: An error analysis. SIAM J. Numer. Anal. 36, 368–392 (1999)CrossRef MathSciNet
    23.Oevermann, M., Klein, R.: A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J. Comput. Phys. 219, 749–769 (2006)CrossRef MathSciNet MATH
    24.Saad, Y., Schultz, M.: Gmres: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)CrossRef MathSciNet MATH
    25.Ying, W., Henriquez, C.: A kernel-free boundary integral method for elliptic boundary value problems. J. Comput. Phys. 227, 1046–1074 (2007)CrossRef MathSciNet MATH
  • 作者单位:Haifeng Ji (1)
    Jinru Chen (1)
    Zhilin Li (1) (2)

    1. School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing, 210023, China
    2. Department of Mathematics, North Carolina State University, Raleigh, NC, 27695, USA
  • 刊物类别:Computer Science
  • 刊物主题:Numeric Computing
    Algorithms
    Mathematics
    Algebra
    Theory of Computation
  • 出版者:Springer U.S.
  • ISSN:1572-9265
文摘
Augmented immersed interface methods have been developed recently for interface problems and problems on irregular domains including CFD applications with free boundaries and moving interfaces. In an augmented method, one or several augmented variables are introduced along the interface or boundary so that one can get efficient discretizations. The augmented variables should be chosen such that the interface or boundary conditions are satisfied. The key to the success of the augmented methods often relies on the interpolation scheme to couple the augmented variables with the governing differential equations through the interface or boundary conditions. This has been done using a least squares interpolation (under-determined) for which the singular value decomposition (SVD) is used to solve for the interpolation coefficients. In this paper, based on properties of the finite element method, a new augmented immersed finite element method (IFEM) that does not need the interpolations is proposed for elliptic interface problems that have a piecewise constant coefficient. Thus the new augmented method is more efficient and simple than the old one that uses interpolations. The method then is extended to Poisson equations on irregular domains with a Dirichlet boundary condition. Numerical experiments with arbitrary interfaces/irregular domains and large jump ratios are provided to demonstrate the accuracy and the efficiency of the new augmented methods. Numerical results also show that the number of GMRES iterations is independent of the mesh size and nearly independent of the jump in the coefficient. Keywords Interface problem Piecewise constant coefficient Immersed finite element Augmented immersed finite element method Poisson equation on irregular domain Fast poisson solver Least squares interpolation using SVD

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700