用户名: 密码: 验证码:
Thermal inverse phase transition of azobenzene hydroxypropylcellulose in aqueous solutions
详细信息    查看全文
  • 作者:Lihua Zhang ; Jixiang Li ; Haiqing Liu
  • 关键词:Hydroxpropylcellulose ; Phase transition temperature ; Azobenzene ; Cyclodextrin
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:1177-1188
  • 全文大小:2,106 KB
  • 参考文献:Arvidson S et al (2012) Interplay of phase separation and thermoreversible gelation in aqueous methylcellulose solutions. Macromolecules 46:300–309CrossRef
    Bajwa GS, Sammon C, Timmins P, Melia CD (2009) Molecular and mechanical properties of hydroxypropyl methylcellulose solutions during the sol:gel transition. Polymer 50:4571–4576. doi:10.​1016/​j.​polymer.​2009.​06.​075 CrossRef
    Bumbu GG, Eckelt J, Wolf BA, Vasile C (2005) Interpolymer complex between hydroxypropyl cellulose and maleic acid-styrene copolymer: phase behavior of semi-dilute solutions. Macromol Biosci 5:936–944. doi:10.​1002/​mabi.​200500070 CrossRef
    Ercole F, Davis TP, Evans RA (2010) Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem 1:37–54. doi:10.​1039/​b9py00300b CrossRef
    Fairclough JPA, Yu H, Kelly O, Ryan AJ, Sammler RL, Radler M (2012) Interplay between gelation and phase separation in aqueous solutions of methylcellulose and hydroxypropylmethylcellulose. Langmuir 28:10551–10557CrossRef
    Gong Z, Yang Y, Ren Q, Chen X, Shao Z (2012) Injectable thixotropic hydrogel comprising regenerated silk fibroin and hydroxypropylcellulose. Soft Matter 8:2875–2883. doi:10.​1039/​c2sm06984a CrossRef
    Haque A, Morris ER (1993) Thermogelation of methylcellulose. Part I: molecular structures and processes. Carbohydr Polym 22:161–173. doi:10.​1016/​0144-8617(93)90137-S CrossRef
    Hiltunen M, Siirilä J, Maunu SL (2012) Effect of catalyst systems and reaction conditions on the synthesis of cellulose-g-PDMAam copolymers by controlled radical polymerization. J Polym Sci A: Polym Chem 50:3067–3076CrossRef
    Hu X, Zheng PJ, Zhao XY, Li L, Tam KC, Gan LH (2004) Preparation, characterization and novel photoregulated rheological properties of azobenzene functionalized cellulose derivatives and their at-CD complexes. Polymer 45:6219–6225. doi:10.​1016/​j.​polymers.​2004.​05.​072 CrossRef
    Huang Y, Kang H, Li G, Wang C, Huang Y, Liu R (2013) Synthesis and photosensitivity of azobenzene functionalized hydroxypropylcellulose. Rsc Adv 3:15909–15916. doi:10.​1039/​c3ra43031f CrossRef
    Hurduc N, Adès D, Belleney J, Siove A, Sauvet G (2007) Photoresponsive new polysiloxanes with 4-substituted azobenzene side-groups. synthesis, characterization and kinetics of the reversible trans-cis-trans isomerization. Macromol Chem Phys 208:2600–2610. doi:10.​1002/​macp.​200700326 CrossRef
    Jing Y, Wu PY (2013) Study on the thermoresponsive two phase transition processes of hydroxypropyl cellulose concentrated aqueous solution: from a microscopic perspective. Cellulose 20:67–81. doi:10.​1007/​s10570-012-9816-z CrossRef
    Kato T, Yokoyama M, Takahashi A (1978) Melting temperatures of thermally reversible gels IV. Methyl cellulose-water gels. Colloid Polym Sci 256:15–21. doi:10.​1007/​bf01746686 CrossRef
    Kim J-H, Koo E, Ju S-Y, Jang W-D (2015) Multimodal stimuli-responsive poly (2-isopropyl-2-oxazoline) with dual molecular logic gate operations. Macromolecules 48:4951–4956CrossRef
    Kobayashi K, C-i Huang, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32:7070–7077. doi:10.​1021/​ma990242n CrossRef
    Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17:8062–8068. doi:10.​1021/​la010917r CrossRef
    Li C, Hou J, Gu J, Han Q, Guan Y, Zhang Y (2015) Synthesis and thermal gelation of hydroxypropyl chitin. RSC Adv 5:39677–39685. doi:10.​1039/​c5ra03967c CrossRef
    Liao Q, Shao QL, Qiu G, Lu XH (2012) Methacrylic acid-triggered phase transition behavior of thermosensitive hydroxypropylcellulose. Carbohydr Polym 89:1301–1304. doi:10.​1016/​j.​carbpol.​2012.​04.​002 CrossRef
    Liu H, Zhang L, Takaragi A, Miyamoto T (1997) Effect of substituent distribution on water solubility of O-methylcellulose. Cellulose 4:321–327. doi:10.​1023/​a:​1018404426960 CrossRef
    Lott JR, McAllister JW, Arvidson SA, Bates FS, Lodge TP (2013a) Fibrillar structure of methylcellulose hydrogels. Biomacromolecules 14:2484–2488. doi:10.​1021/​bm400694r CrossRef
    Lott JR, McAllister JW, Wasbrough M, Sammler RL, Bates FS, Lodge TP (2013b) Fibrillar structure in aqueous methylcellulose solutions and gels. Macromolecules 46:9760–9771. doi:10.​1021/​ma4021642 CrossRef
    Lu X, Hu Z, Schwartz J (2002) Phase transition behavior of hydroxypropylcellulose under interpolymer complexation with poly(acrylic acid). Macromolecules 35:9164–9168. doi:10.​1021/​ma0208842 CrossRef
    McAllister JW, Lott JR, Schmidt PW, Sammler RL, Bates FS, Lodge TP (2015) Linear and nonlinear rheological behavior of fibrillar methylcellulose hydrogels. ACS Macro Lett 4:538–542. doi:10.​1021/​acsmacrolett.​5b00150 CrossRef
    Nagel MCV, Koschella A, Voiges K, Mischnick P, Heinze T (2010) Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O. Eur Polym J 46:1726–1735. doi:10.​1016/​j.​eurpolymj.​2010.​05.​009 CrossRef
    Patra A, Verma PK, Mitra RK (2012) Slow relaxation dynamics of water in hydroxypropyl cellulose–water mixture traces its phase transition pathway: a spectroscopic investigation. J Phys Chem B 116:1508–1516. doi:10.​1021/​jp300428h CrossRef
    Qin W, Li Z, Li J, Zhang L, Liu R, Liu H (2015) Synthesis and characterization of azobenzene hydroxypropyl cellulose with photochromic and thermotropic liquid crystal properties. Cellulose 22:203–214. doi:10.​1007/​s10570-014-0479-9 CrossRef
    Sakakibara K, Takano T, Nakatsubo F (2011) Synthesis of methylcellulose model copolymers with heterogeneous distribution and their solution properties. Cellulose 18:105–115. doi:10.​1007/​s10570-010-9461-3 CrossRef
    Sarkar N (1979) Thermal gelation properties of methyl and hydroxypropyl methylcellulose. J Appl Polym Sci 24:1073–1087. doi:10.​1002/​app.​1979.​070240420 CrossRef
    Streletzky KA, John T, Mohieddine R (2008) Spectral time moment analysis of microgel structure and dynamics. J Polym Sci B: Polym Phys 46:771–781. doi:10.​1002/​polb.​21406 CrossRef
    Takeshita H, Saito K, Miya M, Takenaka K, Shiomi T (2010) Laser speckle analysis on correlation between gelation and phase separation in aqueous methyl cellulose solutions. J Polym Sci B: Polym Phys 48:168–174. doi:10.​1002/​polb.​21885 CrossRef
    Vshivkov SA, Rusinova EV (2007) Phase diagrams of a hydroxypropyl cellulose-water system under static conditions and in the shear field. Polym Sci Ser B 49:209–212. doi:10.​1134/​s156009040707009​3 CrossRef
    Xu Y, Wang C, Tam KC, Li L (2004) Salt-assisted and salt-suppressed sol–gel transitions of methylcellulose in water. Langmuir 20:646–652. doi:10.​1021/​la0356295 CrossRef
    Yuen F, Tam KC (2010) Cyclodextrin-assisted assembly of stimuli-responsive polymers in aqueous media. Soft Matter 6:4613–4630. doi:10.​1039/​c0sm00043d CrossRef
    Zhang W, Xie J, Shi W (2007) Synthesis and characterization of dendrons and dendrimers skeleton-constructed with azobenzene moiety. Eur Polym J 43:2387–2400. doi:10.​1016/​j.​eurpolymj.​2007.​04.​001 CrossRef
    Zheng PJ, Wang C, Hu X, Tam KC, Li L (2005) Supramolecular complexes of azocellulose and α-cyclodextrin: isothermal titration calorimetric and spectroscopic studies. Macromolecules 38:2859–2864. doi:10.​1021/​ma048324l CrossRef
  • 作者单位:Lihua Zhang (1)
    Jixiang Li (1)
    Haiqing Liu (1)

    1. Fujian Provincial Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian, 350007, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
Water soluble 2-azobenzenoxy-ethoxy-hydroxpropylcelluloses (azo-EHPC) were synthesized by etherification reaction of bromoethoxy-azobenzene (BEA) with hydroxypropylcellulose (HPC) to study their phase transition behavior in aq. solution. The degree of substitution (DS) of the water soluble azo-EHPCs was less than 0.066. Their chemical structure and thermal property were characterized by proton nuclear magnetic resonance (1H-NMR), fourier transform infrared spectroscopy (FT-IR), and differential scanning calorimetry. The azo-EHPC showed a reversible sol–gel transition behavior in its aq. solution, i.e. a clear azo-EHPC aq. solution became turbid when the solution temperature surpassed a lower critical solution temperature (LCST). The sol–gel transition phenomenon was investigated by optical microscopy and turbidimetric measurement. It was found that the LCST was related to the cis-/trans- conformation of the azobenzene side group, the type of cyclodextrin (CD), concentration of azo-EHPC, and NaCl concentration. The LCST of azo-EHPC was lower than that of HPC (36.6 °C) by at most 13.6 °C, and the LCST of trans-azo-EHPC was less than that of cis-azo-EHPC by ca. 3 °C. Additionally, the presence of CD in solutions displayed a positive effect on the LCST, i.e. increasing the LCST by 3–5 °C. And this impact was more profound on the azo-EHPC with higher DS values. The thermoreversible phase transition mechanism was discussed. We proposed that the effect of DS, conformation of azobenzene group, azo-EHPC concentration, salt concentration, and CD on the LCST of azo-EHPCs was a rearrangement of the hydrophilic/hydrophobic interaction between side azobenzene groups and water molecules.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700