用户名: 密码: 验证码:
Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells
详细信息    查看全文
  • 作者:Weibo Yan ; Yu Li ; Senyun Ye ; Yunlong Li ; Haixia Rao ; Zhiwei Liu…
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:9
  • 期:6
  • 页码:1600-1608
  • 全文大小:2,111 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
  • 卷排序:9
文摘
A series of conductive polymers, i.e., poly(3-methylthiophene) (PMT), poly(thiophene) (PT), poly(3-bromothiophene) (PBT) and poly(3-chlorothiophene) (PCT), were prepared via the electrochemical polymerization process. Subsequently, their application as hole-transporting materials (HTMs) in CH3NH3PbI3 perovskite solar cells was explored. It was found that rationally increasing the work function of HTMs proves beneficial in improving the open circuit voltage (Voc) of the devices with an ITO/conductive-polymer/CH3NH3PbI3/C60/BCP/Ag structure. In addition, the higher-Voc devices with a higher-work-function HTM exhibited higher recombination resistances. The highest open circuit voltage of 1.04 V was obtained from devices with PCT, with a work function of–5.4 eV, as the hole-transporting layer. Its power conversion efficiency attained a value of approximately 16.5%, with a high fill factor of 0.764, an appreciable open voltage of 1.01 V and a short circuit current density of 21.4 mA·cm–2. This simple, controllable and low-cost manner of preparing HTMs will be beneficial to the production of large-area perovskite solar cells with a hole-transporting layer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700