potential type- the paper aims at the development of the fourth order tensor-valued Taylor–Kármán structured covariance/correlation matrices. The characteristic functions of these tensor-valued covariance/correlation matrices, namely the lateral and longitudinal components, will be derived for n-dimensional spaces, here specified for \(n=3\) dimensions in the paper. A special part is devoted to the Hankel transformation for gravity gradients and their variance-covariance in order to guarantee consistency well-known from problems in using Fourier transformations. We use the variance-covariance function of type (i) isotropic, (ii) homogeneous and (iii) potential as prior information for fitting the discrete data of variances and covariances estimated from observations. Keywords Stochastic process Gravity gradient Covariance function Taylor–Kármán structured tensor" />
用户名: 密码: 验证码:
Fourth order Taylor–Kármán structured covariance tensor for gravity gradient predictions by means of the Hankel transformation
详细信息    查看全文
  • 作者:Erik W. Grafarend ; Rey-Jer You
  • 关键词:Stochastic process ; Gravity gradient ; Covariance function ; Taylor–Kármán structured tensor ; 31B99 ; 34A30 ; 42A38 ; 60G60 ; 86A30
  • 刊名:GEM - International Journal on Geomathematics
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:6
  • 期:2
  • 页码:319-342
  • 全文大小:827 KB
  • 参考文献:Austen, G., Grafarend, E.W., Reubelt, T.: Analysis of the Earth’s gravitational field from semi continuous ephemeris of a low earth orbiting GPS-tracked satellite of type CHAMP, GRACE or GOCE. In: ádám, Schwarx (eds.) Vistas for Geodesy in the New Millennium, International Association of Geodesy Symposia, vol. 125, pp. 309-15 (2001)
    Baarda, W.: S-Transformations and criterion matrices. In: Proceedings of Netherlands Geodetic Commission, vol. 7, no. 1, Delft (1973)
    Batchelor, G.K.: The Theory of Homogeneous Turbulence. Combridge University Press, Cambridge (1953)MATH
    Buell, C.E.: Correlation functions for wind and geopotential on isobaric surfaces. J. Appl. Meteorol. 11, 51-9 (1972)CrossRef
    Comte, F., Rozenhole, Y.: Adaptive estimation of mean and volatility functions in (auto-) regressiv emodels. Stoch. Process. Appl. 97, 111-45 (2002)MATH CrossRef
    Durbin, P.A., Pettersson Rief, B.A.: Statistical Theory and Modeling for Turbulent Flows. Wiley, West Sussex (2010)CrossRef
    Fantino, E., Casotto, S.: Methods of harmonic synthesis for global geopotential models and their first-, second- and third-order gradients. J. Geod. 83, 595-19 (2009)CrossRef
    Gaspari, G., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125, 723-57 (1999)CrossRef
    Gneiting, T.: Correlation functions for atmospheric data analysis. Q. J. R. Meteorol. Soc. 125, 2449-464 (1999)CrossRef
    Gneitling, T., Sasvári, Z.: The characterization problem for isotropic covariance functions. Q. J. R. Meteorol. Soc. 125, 2449-464 (1999)CrossRef
    Grafarend, E.W.: Theory for the stochastic gravity field. Phys. Lett. A 31(1), 7- (1970)CrossRef
    Grafarend, E.W: Statistische Modelle zur Pr?diktion von Lotabweichungen. Vermessungstechnik 19, 66-8 (1971a)
    Grafarend, E.W.: Isotropietests von Lotabweichungs-verteilungen in Westdeutschland I. Zeitschrift für Geophysik 37, 719-33 (1971b)
    Grafarend, E.W.: Lotabweichungsverteilungen Westdeutschlands und ihre gruppentheoretische Struktur. Mitteilungen aus dem Institut fur Theoretische Geod?sie der Universit?t Bonn Geod?sie no. 1, Bonn (1971c)
    Grafarend, E.W.: Isotropietests von Lotabweichungs-verteilungen in Westdeutschland II. Zeitschrift für Geophysik 38, 243-55 (1972)
    Grafarend, E.W.: Geodetic applications of stochastic processes. In: Proceedings of Physics of the Earth and Planetary Interiors, vol. 21, pp. 151-79. Communication from the Geodetic Institute, Uppsala University no. 13, Uppsala 1975 (1976)
    Grafarend, E.W.: Criterion matrices for deforming networks. In: Grafarend, E.W., Sanso, F. (eds.) Optimization and Design of Geodetic Networks, pp. 363-28. Springer, New York (1985)
    Grafarend, E.W., Offermanns G.: Eine Lotabweichungskarte Westdeutschlands nach einem geod?tisch konsistenten Kolmogorov–Wiener Modell. Deutsche Geod?tische Kommission bei der Bayerischen Akademie der Wissenschaften A 82, München (1975)
    Grafarend, E.W., Krumm, F., Schaffrin, B.: Kriterion-Matrizen III -zwei-dimensionale homogene und isotrope Netze. Zeitschrift für Vermessungswesen 5, 197-07 (1986)
    Grafarend, E.W., Schaffrin, B.: Kriterion-Matrizen I -zwei-dimensionale homogene und isotrope Netze. Zeitschrift für Vermessungswesen 4, 133-49 (1979)
    Haslett, J.: Space time modeling in meteorology -a review. Bull. Int. Stat. Inst. 53, 229-46 (1989)MathSciNet
    Heine, V.: Models for two-dimensional stochastic process. Biometrika 42, 170-78 (1955)MATH MathSciNet CrossRef
    Jordan, S.K.: Self-consistent statistical models for the gravity anomaly, vertical deflections, and undulation of the geoid. J. Geophys. Res. 77, 3660-670 (1972)CrossRef
    Kármán, T., Howarth, L.: On the statistical theory of turbulence. Proc. R. Soc. A 164, 192-15 (1938)CrossRef
    Kasper, J.F.: A second-order Markov gravity anomaly model. J. Geophys. Res. 76, 7844-849 (1971)CrossRef
    Lai, T.L., Lee, C.P.: Information and prediction criteria for model selection in stochastic regression and ARMA models. Statistica Sinica 7, 285-09 (1997)MATH MathSciNet
    Marenkovic, P., Grafarend, E.W., Reubelt, T.: Space gravity spectroscopy:the benefits of Taylor–Kármán structured criterion matrics. Adv. Geosci. 1, 113-20 (2003)CrossRef
    Meier, S.: Die Kovarianzfunktion der 2. Ableitung der Schwere nach der H?he. Studia geoph. et geod. 24, 314-16 (1980)CrossRef
    Meier, S.: Planar geodetic covariance functions. Rev. Geophys. Space Phys. 19, 673-86 (1981)CrossRef
    Meier, S., Keller, W.: Geostatistik. Akademie, Berlin (1990)CrossRef
    Obuchow, A.M.: Statistische Beschreibung stetiger Felder. In: Goering, H. (ed.) Sammelband zur statistischen Theorie der Turbulenz. Akademie Veralge, Berlin (1958)
    Poularikas, A.D. (ed.): Transforms and Applications: Handbook, 3rd. edn. CRC Press, Boca Raton (2010)
    Robertson, H.P.: The invariant theory of isotropic turbulence. Proc Camb. Philos. Soc. 36, 209-23 (1940)CrossRef
    Schoenberg, I.J.:
  • 作者单位:Erik W. Grafarend (1)
    Rey-Jer You (2)

    1. Institute of Geodesy, Stuttgart University, Geschwister-Schroll Str. 24D, 70174, Stuttgart, Germany
    2. Department of Geomatics, National Cheng Kung University, 1, University Road, East Dist, Tainan, 70101, Taiwan
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Applications of Mathematics
    Computational Science and Engineering
    Mathematical Applications in Earth Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1869-2680
文摘
Vector-valued stochastic processes have been used for data processing, prediction, filtering, collocation, even network design and analysis in Geodesy, Physical Geodesy, and navigation etc. Recently, LEO satellite missions, such as CHAMP, GRACE and GOCE, provide a number of measurements to study the gravitational field of the Earth. When the gravity gradients, i.e. the second derivatives of the gravitational potential, are used for prediction and filtering by Kolmogorov–Wiener/Gauss–Markov concept, we will need the fourth-order covariance/correlation matrices of the gravity gradient signals. With the assumptions of homogeneous and isotropic field and the random functions of -em class="EmphasisTypeItalic ">potential type- the paper aims at the development of the fourth order tensor-valued Taylor–Kármán structured covariance/correlation matrices. The characteristic functions of these tensor-valued covariance/correlation matrices, namely the lateral and longitudinal components, will be derived for n-dimensional spaces, here specified for \(n=3\) dimensions in the paper. A special part is devoted to the Hankel transformation for gravity gradients and their variance-covariance in order to guarantee consistency well-known from problems in using Fourier transformations. We use the variance-covariance function of type (i) isotropic, (ii) homogeneous and (iii) potential as prior information for fitting the discrete data of variances and covariances estimated from observations. Keywords Stochastic process Gravity gradient Covariance function Taylor–Kármán structured tensor

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700