用户名: 密码: 验证码:
A simple additive-free approach for the synthesis of uniform manganese monoxide nanorods with large specific surface area
详细信息    查看全文
  • 作者:Mingtao Zheng (1)
    Haoran Zhang (1)
    Xuebin Gong (1)
    Ruchun Xu (1)
    Yong Xiao (1)
    Hanwu Dong (1)
    Xiaotang Liu (1)
    Yingliang Liu (1)
  • 关键词:Manganese monoxide ; Nanorods ; Additive ; free synthesis ; Formation mechanism
  • 刊名:Nanoscale Research Letters
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:8
  • 期:1
  • 全文大小:601KB
  • 参考文献:1. Wang X, Li YD: Selected-control hydrothermal synthesis of alpha- and beta-MnO 2 single crystal. / J Am Chem Soc 2002, 124:2880-881. CrossRef
    2. Li ZQ, Ding Y, Xiong YJ, Yang Q, Xie Y: One-step solution-based catalytic route to fabricate novel alpha-MnO 2 hierarchical structures on a large scale. / Chem Commun 2005, 7:918-20. CrossRef
    3. Wang LZ, Sakai N, Ebina Y, Takada K, Sasaki T: Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations: fabrication, structure, and electrochemical behavior. / Chem Mater 2005, 17:1352-357. CrossRef
    4. El-Deab MS, Ohsaka T: Manganese oxide nanoparticles electrodeposited on platinum are superior to platinum for oxygen reduction. / Angew Chem Int Ed 2006, 45:5963-966. CrossRef
    5. Li WN, Yuan JK, Gomez-Mower S, Xu LP, Sithambaram S, Aindow M, Suib SL: Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials. / Adv Funct Mater 2006, 16:1247-253. CrossRef
    6. Zhang WX, Yang ZH, Wang X, Zhang YC, Wen XG, Yang SH: Large-scale synthesis of beta-MnO 2 nanorods and their rapid and efficient catalytic oxidation of methylene blue dye. / Catal Commun 2006, 7:408-12. CrossRef
    7. Liu DW, Zhang QF, Xiao P, Garcia BB, Guo Q, Champion R, Cao GZ: Hydrous manganese dioxide nanowall arrays growth and their Li + ions intercalation electrochemical properties. / Chem Mater 2008, 20:1376-380. CrossRef
    8. Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB: Controlled preparation of MnO 2 hierarchical hollow nanostructures and their application in water treatment. / Adv Mater 2008, 20:452-56. CrossRef
    9. Xu CL, Zhao YQ, Yang GW, Li FS, Li HL: Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. / Chem Commun 2009, 48:7575-577. CrossRef
    10. Yan JA, Khoo E, Sumboja A, Lee PS: Simple coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. / ACS Nano 2010, 4:4247-255. CrossRef
    11. Park JH, Kim JM, Jin M, Jeon JK, Kim SS, Park SH, Kim SC, Park YK: Catalytic ozone oxidation of benzene at low temperature over MnO x /Al-SBA-16 catalyst. / Nanoscale Res Lett 2012, 7:1-. CrossRef
    12. Xia H, Wang Y, Lin J, Lu L: Hydrothermal synthesis of MnO 2 /CNT nanocomposite with a CNT core/porous MnO 2 sheath hierarchy architecture for supercapacitors. / Nanoscale Res Lett 2012, 7:1-0. CrossRef
    13. Ma RZ, Bando YS, Zhang LQ, Sasaki T: Layered MnO 2 nanobelts: hydrothermal synthesis and electrochemical measurement. / Adv Mater 2004, 16:918-22. CrossRef
    14. Wang LZ, Ebina Y, Takada K, Sasaki T: Ultrathin hollow nanoshells of manganese oxide. / Chem Commun 2004, 9:1074-075. CrossRef
    15. Yu CC, Zhang LX, Shi JL, Zhao JJ, Cao JH, Yan DS: A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties. / Adv Funct Mater 2008, 18:1544-554. CrossRef
    16. Wei WF, Cui XW, Chen WX, Ivey DG: Phase-controlled synthesis of MnO 2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors. / J Phy Chem C 2008, 112:15075-5083. CrossRef
    17. Ni JP, Lu WC, Zhang LM, Yue BH, Shang XF, Lv Y: Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. / J Phys Chem C 2009, 113:54-0. CrossRef
    18. Chen S, Zhu JW, Han QF, Zheng ZJ, Yang Y, Wang X: Shape-controlled synthesis of one-dimensional MnO 2 via a simple quick-precipitation procedure and its electrochemical properties. / Cryst Growth Des 2009, 9:4356-361. CrossRef
    19. Gui Z, Fan R, Chen XH, Wu YC: A simple direct preparation of nanocrystalline γ-Mn 2 O 3 at ambient temperature. / Inorg Chem Commun 2001, 4:294-96. CrossRef
    20. Lei SJ, Tang KB, Fang Z, Liu QC, Zheng HG: Preparation of α-Mn 2 O 3 and MnO from thermal decomposition of MnCO 3 and control of morphology. / Mater Lett 2006, 60:53-6. CrossRef
    21. Cao J, Zhu Y, Bao K, Shi L, Liu S, Qian Y: Microscale Mn 2 O 3 hollow structures: sphere, cube, ellipsoid, dumbbell, and their phenol adsorption properties. / J Phys Chem C 2009, 113:17755-7760. CrossRef
    22. Cheney MA, Hanifehpour Y, Joo SW, Min BK: A simple and fast preparation of neodymium-substituted nanocrystalline Mn 2 O 3 . / Mater Res Bull 2013, 48:912-15. CrossRef
    23. Sambasivam S, Li GJ, Jeong JH, Choi BC, Lim KT, Kim SS, Song TK: Structural, optical, and magnetic properties of single-crystalline Mn 3 O 4 nanowires. / J Nanop Res 2012, 14:1138/1-138/9.
    24. Li J, Li L, Wu F, Zhang L, Liu X: Dispersion-precipitation synthesis of nanorod Mn 3 O 4 with high reducibility and the catalytic complete oxidation of air pollutants. / Catal Commun 2013, 31:52-6. CrossRef
    25. Nayak SK, Jena P: Equilibrium geometry, stability and magnetic properties of small MnO clusters. / J Am Chem Soc 1999, 121:644-52. CrossRef
    26. Lee GH, Huh SH, Jeong JW, Choi BJ, Kim SK, Ri HC: Anomalous magnetic properties of MnO nanoclusters. / J Am Chem Soc 2002, 124:12094-2095. CrossRef
    27. Poizot P, Laruelle S, Grugeon S, Tarascon JM: Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. / J Electrochem Soc 2002, 149:A1212-A1217. CrossRef
    28. Fang XP, Lu X, Guo XW, Mao Y, Hu YS, Wang JZ, Wang ZX, Wu F, Liu HK, Chen LQ: Electrode reactions of manganese oxides for secondary lithium batteries. / Electrochem Commun 2010, 12:1520-523. CrossRef
    29. Park J, Kang EA, Bae CJ, Park JG, Noh HJ, Kim JY, Park JH, Park JH, Hyeon T: Synthesis, characterization, and magnetic properties of uniform-sized MnO nanospheres and nanorods. / J Phys Chem B 2004, 108:13594-3598. CrossRef
    30. Zitoun D, Pinna N, Frolet N, Belin C: Single crystal manganese oxide multipods by oriented attachment. / J Am Chem Soc 2005, 127:15034-5035. CrossRef
    31. Shanmugam S, Gedanken A: MnO octahedral nanocrystals and MnO@C core-shell composites: synthesis, characterization, and electrocatalytic properties. / J Phys Chem B 2006, 110:24486-4491. CrossRef
    32. Ghosh M, Biswas K, Sundaresan A, Rao CNR: MnO and NiO nanoparticles: synthesis and magnetic properties. / J Mater Chem 2006, 16:106-11. CrossRef
    33. Lei S, Tang K, Fang Z, Liu Q, Zheng H: Preparation of α-Mn 2 O 3 and MnO from thermal decomposition of MnCO 3 and control of morphology. / Mater Lett 2006, 60:53-6. CrossRef
    34. Liu Y, Zhao X, Li F, Xia D: Facile synthesis of MnO/C anode materials for lithium-ion batteries. / Electrochim Acta 2011, 56:6448-452. CrossRef
    35. Chen YF, Johnson E, Peng XG: Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: Self-focusing via ripening. / J Am Chem Soc 2007, 129:10937-0947. CrossRef
    36. Zhong KF, Zhang B, Luo SH, Wen W, Li H, Huang XJ, Chen LQ: Investigation on porous MnO microsphere anode for lithium ion batteries. / J Power Sources 2011, 196:6802-808. CrossRef
    37. Banis MN, Zhang Y, Banis HN, Li R, Sun X, Jiang X, Nikanpour D: Controlled synthesis and characterization of single crystalline MnO nanowires and Mn-Si oxide heterostructures by vapor phase deposition. / Chem Phys Lett 2011, 501:470-74. CrossRef
    38. Li SR, Sun Y, Ge SY, Qiao Y, Chen YM, Lieberwirth I, Yu Y, Chen CH: A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries. / Chem Eng J 2012, 192:226-31. CrossRef
    39. Lin CC, Chen CJ, Chiang RK: Facile synthesis of monodisperse MnO nanoparticles from bulk MnO. / J Crystal Growth 2012, 338:152-56. CrossRef
    40. Nam KM, Kim , Kim YI, Jo Y, Lee SM, Kim BG, Choi R, Choi SI, Song H, Park JT: New crystal structure: synthesis and characterization of hexagonal wurtzite MnO. / J Am Chem Soc 2012, 134:8392-395. CrossRef
    41. Sun YM, Hu XL, Luo W, Huang YH: Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties. / J Mater Chem 2012, 22:19190-9195. CrossRef
    42. Xu G, Zhang L, Guo C, Gu L, Wang X, Han P, Zhang K, Zhang C, Cui G: Manganese monoxide/titanium nitride composite as high performance anode material for rechargeable Li-ion batteries. / Electrochim Acta 2012, 85:345-51. CrossRef
    43. Chen H, He J: Facile synthesis of monodisperse manganese oxide nanostructures and their application in water Treatment. / J Phys Chem C 2008, 112:17540-7545. CrossRef
    44. Zheng M, Liu Y, Jiang K, Xiao Y, Yuan D: Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio. / Carbon 2010, 48:1224-233. CrossRef
    45. Sevilla M, Fuertes AB: Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. / Chem Eur J 2009, 15:4195-203. CrossRef
  • 作者单位:Mingtao Zheng (1)
    Haoran Zhang (1)
    Xuebin Gong (1)
    Ruchun Xu (1)
    Yong Xiao (1)
    Hanwu Dong (1)
    Xiaotang Liu (1)
    Yingliang Liu (1)

    1. Department of Applied Chemistry, College of Science, South China Agricultural University, Guangzhou, 510642, China
  • ISSN:1556-276X
文摘
A simple additive-free approach is developed to synthesize uniform manganese monoxide (MnO) one-dimensional nanorods, in which only manganese acetate and ethanol were used as reactants. The as-synthesized MnO nanorods were characterized in detail by X-ray diffraction, scanning and transmission electron microscopy (TEM) including high-resolution TEM and selected-area electron diffraction, Fourier transform infrared spectrum, and nitrogen adsorption isotherm measurements. The results indicate that the as-synthesized MnO nanorods present a mesoporous characteristic with large specific surface area (153 m2 g?), indicating promising applications in catalysis, energy storage, and biomedical image. On the basis of experimental results, the formation mechanism of MnO one-dimensional nanorods in the absence of polymer additives was also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700