用户名: 密码: 验证码:
Emerging Strategies to Enhance Homing and Engraftment of Hematopoietic Stem Cells
详细信息    查看全文
  • 作者:Mariusz Z. Ratajczak ; Malwina Suszynska
  • 关键词:Stem cell homing ; Adult stem cells ; CXCR4 ; VLA ; 4 ; SDF ; 1 ; S1P ; C1P ; Extracellular nucleotides ; Lipid rafts ; Priming ; Chemotaxis
  • 刊名:Stem Cell Reviews and Reports
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:12
  • 期:1
  • 页码:121-128
  • 全文大小:461 KB
  • 参考文献:1.Lévesque, J. P., Helwani, F. M., & Winkler, I. G. (2010). The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia, 24, 1979–1992.CrossRef PubMed
    2.Lapidot, T., & Kollet, O. (2010). The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology American Society of Hematology. Education Program, 2010, 1–6.CrossRef
    3.Ratajczak, M. Z. (2015). A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia, 29, 776–782.PubMedCentral CrossRef PubMed
    4.Gluckman, E., & Rocha, V. (2009). Cord blood transplantation: state of the art. Haematologica, 94, 451–454.PubMedCentral CrossRef PubMed
    5.Reddy, R. L. (2005). Mobilization and collection of peripheral blood progenitor cells for transplantation. Transfusion and Apheresis Science, 32, 63–72.CrossRef PubMed
    6.Pineault, N., & Abu-Khader, A. (2015). Advances in umbilical cord blood stem cell expansion and clinical translation. Experimental Hematology, 43, 498–513.CrossRef PubMed
    7.Broxmeyer, H. E. (2012). Enhancing engraftment of cord blood cells via insight into the biology of stem/progenitor cell function. Annals of the New York Academy of Sciences, 1266, 151–160.PubMedCentral CrossRef PubMed
    8.Lund, T. C., Boitano, A. E., Delaney, C. S., Shpall, E. J., & Wagner, J. E. (2015). Advances in umbilical cord blood manipulation-from niche to bedside. Nature Reviews. Clinical Oncology, 12, 163–174.PubMedCentral CrossRef PubMed
    9.Ara, T., Tokoyoda, K., Sugiyama, T., Egawa, T., Kawabata, K., & Nagasawa, T. (2003). Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity, 19, 257–267.CrossRef PubMed
    10.Seitz, G., Boehmler, A. M., Kanz, L., & Möhle, R. (2005). The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells. Annals of the New York Academy of Science, 1044, 84–89.CrossRef
    11.Massberg, S., & von Andrian, U. H. (2009). Novel trafficking routes for hematopoietic stem and progenitor cells. Annals of the New York Academy of Sciences, 1176, 87–93.PubMedCentral CrossRef PubMed
    12.Ratajczak, M. Z., Lee, H., Wysoczynski, M., Wan, W., Marlicz, W., Laughlin, M. J., et al. (2010). Novel insight into stem cell mobilization-Plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia, 24, 976–985.PubMedCentral CrossRef PubMed
    13.Juarez, J. G., Harun, N., Thien, M., Welschinger, R., Baraz, R., Pena, A. D., et al. (2012). Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood, 119, 707–716.CrossRef PubMed
    14.Golan, K., Vagima, Y., Ludin, A., Itkin, T., Cohen-Gur, S., Kalinkovich, A., et al. (2012). S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood, 119, 2478–2488.PubMedCentral CrossRef PubMed
    15.Rossi, L., Manfredini, R., Bertolini, F., Ferrari, D., Fogli, M., Zini, R., et al. (2007). The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood, 109, 533–542.CrossRef PubMed
    16.Adams, G. B., Chabner, K. T., Alley, I. R., Olson, D. P., Szczepiorkowski, Z. M., Poznansky, M. C., et al. (2006). Stem Cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature, 439, 599–603.CrossRef PubMed
    17.Okajima, F. (2013). Regulation of inflammation by extracellular acidification and proton-sensing GPCRs. Cellular Signalling, 25, 2263–2271.CrossRef PubMed
    18.Colson, Y. L., Shinde Patil, V. R., & Ildstad, S. T. (2007). Facilitating cells: novel promoters of stem cell alloengraftment and donor-specific transplantation tolerance in the absence of GVHD. Critical Reviews in Oncology/Hematology, 6, 26–43.CrossRef
    19.Walasek, M. A., van Os, R., & de Haan, G. (2012). Hematopoietic stem cell expansion: challenges and opportunities. Annals of the New York Academy of Sciences, 1266, 138–150.CrossRef PubMed
    20.Goñi, F. M. (2014). The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochimica et Biophysica Acta, 1838, 1467–1476.CrossRef PubMed
    21.Ratajczak, M. Z., & Adamiak, M. (2015). Membrane lipid rafts, master regulators of hematopoietic stem cell retention in bone marrow and their trafficking. Leukemia, 29, 1452–1457.CrossRef PubMed
    22.Wysoczynski, M., Reca, R., Ratajczak, J., Kucia, M., Shirvaikar, N., Honczarenko, M., et al. (2005). Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood, 105, 40–48.CrossRef PubMed
    23.Ponomaryov, T., Peled, A., Petit, I., Taichman, R. S., Habler, L., Sandbank, J., et al. (2000). Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. The Journal of Clinical Investigation, 106, 1331–1339.PubMedCentral CrossRef PubMed
    24.Lévesque, J. P., Hendy, J., Takamatsu, Y., Williams, B., Winkler, I. G., & Simmons, P. J. (2002). Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Experimental Hematology, 30, 440–449.CrossRef PubMed
    25.Kim, C. H., Wu, W., Wysoczynski, M., Abdel-Latif, A., Sunkara, M., Morris, A., et al. (2012). Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia, 26, 106–116.PubMedCentral CrossRef PubMed
    26.Wu, W., Kim, C. H., Liu, R., Kucia, M., Marlicz, W., Greco, N., et al. (2012). The bone marrow-expressed antimicrobial cationic peptide LL-37 enhances the responsiveness of hematopoietic stem progenitor cells to an SDF-1 gradient and accelerates their engraftment after transplantation. Leukemia, 26, 736–745.PubMedCentral CrossRef PubMed
    27.Avigdor, A., Goichberg, P., Shivtiel, S., Dar, A., Peled, A., Samira, S., et al. (2004). CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood, 103, 2981–2989.CrossRef PubMed
    28.Wysoczynski, M., Reca, R., Lee, H., Wu, W., Ratajczak, J., & Ratajczak, M. Z. (2009). Defective engraftment of C3aR−/− hematopoietic stem progenitor cells reveals a novel role of the C3a-C3aR axis in bone marrow homing. Leukemia, 23, 1455–1461.PubMedCentral CrossRef PubMed
    29.Ratajczak, M. Z., Kim, C. H., Abdel-Latif, A., Schneider, G., Kucia, M., Morris, A. J., et al. (2012). A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia, 26, 63–72.CrossRef PubMed
    30.Ratajczak, M. Z., Reca, R., Wysoczynski, M., Kucia, M., Baran, J. T., & Allendorf, D. J. (2004). Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia, 18, 1482–1490.CrossRef PubMed
    31.Chae, H. D., Lee, K. E., Williams, D. A., & Gu, Y. (2008). Cross-talk between RhoH and Rac1 in regulation of actin cytoskeleton and chemotaxis of hematopoietic progenitor cells. Blood, 111, 2597–2605.PubMedCentral CrossRef PubMed
    32.Capitano, M. L., Hangoc, G., Cooper, S., & Broxmeyer, H. E. (2015). Mild heat treatment primes human CD34+ cord blood cells for migration toward SDF-1α and enhances engraftment in an NSG mouse model. Stem Cells, 33, 1975–1984.CrossRef PubMed
    33.Brunstein, C. G., McKenna, D. H., DeFor, T. E., Sumstad, D., Paul, P., Weisdorf, D. J., et al. (2013). Complement fragment 3a priming of umbilical cord blood progenitors: safety profile. Biology of Blood and Marrow Transplantation, 19, 1474–1479.PubMedCentral CrossRef PubMed
    34.Xia, L., McDaniel, J. M., Yago, T., Doeden, A., & McEver, R. P. (2004). Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood, 104, 3091–3096.CrossRef PubMed
    35.Hoggatt, J., Singh, P., Sampath, J., & Pelus, L. M. (2009). Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood, 113, 5444–5455.PubMedCentral CrossRef PubMed
    36.North, T. E., Babu, I. R., Vedder, L. M., Lord, A. M., Wishnok, J. S., Tannenbaum, S. R., et al. (2010). PGE2-regulated wnt signaling and N-acetylcysteine are synergistically hepatoprotective in zebrafish acetaminophen injury. Proceedings of the National Academy of Sciences of the United States of America, 105, 17315–17320.CrossRef
    37.Pelus, L. M., Hoggatt, J., & Singh, P. (2011). Pulse exposure of haematopoietic grafts to prostaglandin E2 in vitro facilitates engraftment and recovery. Cell Proliferation, 44, 22–29.CrossRef PubMed
    38.Broxmeyer, H. E., & Pelus, L. M. (2014). Inhibition of DPP4/CD26 and dmPGE2 treatment enhances engraftment of mouse bone marrow hematopoietic stem cells. Blood Cells, Molecules & Diseases, 53, 34–38.CrossRef
    39.Gul, H., Marquez-Curtis, L. A., Jahroudi, N., Lo, J., Turner, A. R., & Janowska-Wieczorek, A. (2009). Valproic acid increases CXCR4 expression in hematopoietic stem/progenitor cells by chromatin remodeling. Stem Cells and Development, 18, 831–838.CrossRef PubMed
    40.Chaurasia, P., Gajzer, D. C., Schaniel, C., D’Souza, S., & Hoffman, R. (2014). Epigenetic reprogramming induces the expansion of cord blood stem cells. The Journal of Clinical Investigation, 124, 2378–2395.PubMedCentral CrossRef PubMed
    41.Janowska-Wieczorek, A., Majka, M., Kijowski, J., Baj-Krzyworzeka, M., Reca, R., Turner, A. R., et al. (2001). Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood, 98, 3143–3149.CrossRef PubMed
    42.Mantel, C. R., O’Leary, H. A., Chitteti, B. R., Huang, X., Cooper, S., Hangoc, G., et al. (2015). Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell, 161, 1553–1565.CrossRef PubMed
    43.Wysoczynski, M., Ratajczak, J., Pedziwiatr, D., Rokosh, G., Bolli, R., & Ratajczak, M. Z. (2015). Identification of heme oxygenase 1 (HO-1) as a novel negative regulator of mobilization of hematopoietic stem/progenitor cells. Stem Cell Reviews, 11, 110–118.PubMedCentral CrossRef PubMed
    44.Ko, K. H., Holmes, T., Palladinetti, P., Song, E., Nordon, R., O’Brien, T. A., et al. (2011). GSK-3β inhibition promotes engraftment of ex vivo-expanded hematopoietic stem cells and modulates gene expression. Stem Cells, 29, 108–118.CrossRef PubMed
    45.Dolnikov, A., Xu, N., Shen, S., Song, E., Holmes, T., Klamer, G., et al. (2014). GSK-3β inhibition promotes early engraftment of ex vivo-expanded haematopoietic stem cells. Cell Proliferation, 47, 113–123.CrossRef PubMed
    46.Freitas, A., Alves-Filho, J. C., Secco, D. D., Neto, A. F., Ferreira, S. H., Barja-Fidalgo, C., et al. (2006). Heme oxygenase/carbon monoxide-biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. British Journal of Pharmacology, 149, 345–354.PubMedCentral CrossRef PubMed
    47.Christopherson, K. W., Hangoc, G., Mantel, C. R., & Broxmeyer, H. E. (2004). Modulation of hematopoietic stem cell homing and engraftment by CD26. Science, 305, 1000–1003.CrossRef PubMed
    48.Kimura, A., Ohmori, T., Kashiwakura, Y., Ohkawa, R., Madoiwa, S., Mimuro, J., et al. (2008). Antagonism of sphingosine 1-phosphate receptor-2 enhances migration of neural progenitor cells toward an area of brain. Stroke, 39, 3411–3417.CrossRef PubMed
    49.Ren, H., Panchatcharam, M., Mueller, P., Escalante-Alcalde, D., Morris, A. J., & Smyth, S. S. (2013). Lipid phosphate phosphatase (LPP3) and vascular development. Biochimica et Biophysica Acta, 1831, 126–132.PubMedCentral CrossRef PubMed
    50.Broxmeyer, H. E., Kappes, F., Mor-Vaknin, N., Legendre, M., Kinzfogl, J., Cooper, S., et al. (2012). DEK regulates hematopoietic stem engraftment and progenitor cell proliferation. Stem Cells and Development, 21, 1449–1454.PubMedCentral CrossRef PubMed
    51.Ratajczak, M. Z., Kucia, M., Jadczyk, T., Greco, N. J., Wojakowski, W., Tendera, M., et al. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 26, 1166–1173.CrossRef PubMed
  • 作者单位:Mariusz Z. Ratajczak (1) (2)
    Malwina Suszynska (1) (2)

    1. Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
    2. Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
  • 刊物主题:Cell Biology;
  • 出版者:Springer US
  • ISSN:1558-6804
文摘
Successful clinical outcomes from transplantation of hematopoietic stem cells (HSCs) depend upon efficient HSC homing to bone marrow (BM), subsequent engraftment, and, finally, BM repopulation. Homing of intravenously administered HSCs from peripheral blood (PB) through the circulation to the BM stem cell niches, which is the first critical step that precedes their engraftment, is enforced by chemotactic factors released in the BM microenvironment that chemoattract HSCs. These chemotactic factors include α-chemokine stromal-derived factor 1 (SDF-1), the bioactive phosphosphingolipids sphingosine-1-phosphate (S1P) and ceramid-1-phosphate (C1P), and the extracellular nucleotides ATP and UTP. Stem cells may also respond to a Ca2+ or H+ gradient by employing calcium- or proton-sensing receptors, respectively. In this review, we will present emerging strategies based on ex vivo manipulation of graft HSCs that are aimed at enhancing the responsiveness of HSCs to BM-secreted chemoattractants and/or promoting HSC adhesion and seeding efficiency in the BM microenvironment. Keywords Stem cell homing Adult stem cells CXCR4 VLA-4 SDF-1 S1P C1P Extracellular nucleotides Lipid rafts Priming Chemotaxis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700