用户名: 密码: 验证码:
Preparation and electrochemical performance of attapulgite/citric acid template carbon electrode materials
详细信息    查看全文
  • 作者:HeMing Luo ; YanZheng Chen ; Bo Mu ; YuanJie Fu…
  • 关键词:Super capacitor ; Template method ; Mesoporous carbon materials ; Electrochemical performance
  • 刊名:Journal of Applied Electrochemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:46
  • 期:3
  • 页码:299-307
  • 全文大小:1,292 KB
  • 参考文献:1.Gao Y, Zhou YS, Qian M, He XN, Redepenning J, Goodman P, Li HM, Jiang L, Lu YF (2013) Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51:52–58. doi:10.​1016/​j.​carbon.​2012.​08.​009 CrossRef
    2.Burke A (2000) Ultracapacitors why, how, and where is the technology. J Power Sources 91:37–50CrossRef
    3.Pan H, Li J, Feng YP (2010) Carbon nanotubes for supercapacitor. Nanoscale Res Lett 5(3):654–668CrossRef
    4.Roberts AJ, Slade RCT (2010) Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors. Electrochim Acta 55(25):7460–7469. doi:10.​1016/​j.​electacta.​2010.​01.​004 CrossRef
    5.Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842CrossRef
    6.Xu B, Hou S, Duan H, Cao G, Chu M, Yang Y (2013) Ultramicroporous carbon as electrode material for supercapacitors. J Power Sources 228:193–197. doi:10.​1016/​j.​jpowsour.​2012.​11.​122 CrossRef
    7.Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950CrossRef
    8.Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27. doi:10.​1016/​j.​jpowsour.​2006.​02.​065 CrossRef
    9.Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850. doi:10.​1002/​adma.​201100984 CrossRef
    10.Su DS, Centi G (2013) A perspective on carbon materials for future energy application. J Energy Chem 22(2):151–173CrossRef
    11.Xia K, Gao Q, Jiang J, Wang H (2013) An unusual method to prepare a highly microporous carbon for hydrogen storage application. Mater Lett 100:227–229CrossRef
    12.Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B, Zhao D (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angew Chem Int Ed 49(43):7987–7991. doi:10.​1002/​anie.​201002849 CrossRef
    13.Chen L-F, Zhang X-D, Liang H-W, Kong M, Guan Q-F, Chen P, Wu Z-Y, Yu S-H (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102CrossRef
    14.Brun N, Prabaharan SRS, Surcin C, Morcrette M, Deleuze H, Birot M, Babot O, Achard M-F, Backov R (2012) Design of hierarchical porous carbonaceous foams from a dual-template approach and their use as electrochemical capacitor and Li ion battery negative electrodes. J Phys Chem C 116(1):1408–1421. doi:10.​1021/​jp206487w CrossRef
    15.Jin J, Tanaka S, Egashira Y, Nishiyama N (2010) KOH activation of ordered mesoporous carbons prepared by a soft-templating method and their enhanced electrochemical properties. Carbon 48(7):1985–1989. doi:10.​1016/​j.​carbon.​2010.​02.​005 CrossRef
    16.Sun L, Zhang X, Wang C, Qiu J, Zhou Y (2014) KOH-activated depleted fullerene soot for electrochemical double layer capacitors. J Appl Electrochem 44:309–316. doi:10.​1007/​s10800-013-0636-0 CrossRef
    17.Xia Y, Yang Z, Mokaya R (2010) Templated nanoscale porous carbons. Nanoscale 2(5):639–659. doi:10.​1039/​b9nr00207c CrossRef
    18.Lee J, Yoon S, oh SM, Shin C-H, Hyeon T (2000) Development of a new mesoporous carbon using an HMS aluminosilicate template. Adv Mater 12(5):359–362CrossRef
    19.Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6(8):2497–2504CrossRef
    20.Luo H, Zhang F, Zhao X, Sun Y, Du K, Feng H (2013) Preparation of mesoporous carbon materials used in electrochemical capacitor electrode by using natural zeolite template/maltose system. J Mater Sci Mater Electron 25(1):538–545. doi:10.​1007/​s10854-013-1621-4 CrossRef
    21.Lv Y, Zhang F, Dou Y, Zhai Y, Wang J, Liu H, Xia Y, Tu B, Zhao D (2012) A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J Mater Chem 22(1):93. doi:10.​1039/​c1jm12742j CrossRef
    22.He X, Li R, Han J, Yu M, Wu M (2013) Facile preparation of mesoporous carbons for supercapacitors by one-step microwave-assisted ZnCl2 activation. Mater Lett 94:158–160. doi:10.​1016/​j.​matlet.​2012.​12.​031 CrossRef
    23.Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A (1997) Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 35(7):1031–1033CrossRef
    24.Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22(7):813–828. doi:10.​1002/​adma.​200902812 CrossRef
    25.Hanzawa Y, Kaneko K, Pekala RW, Dresselhaus MS (1996) Activated carbon aerogels. Langmuir ACS J Surf Coll 12(26):6167–6169CrossRef
    26.Kyotani T (2000) Control of pore structure in carbon. Carbon 38(2):269–286CrossRef
    27.Lv Y, Gan L, Liu M, Xiong W, Xu Z, Zhu D, Wright DS (2012) A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J Power Sources 209:152–157CrossRef
    28.Yoon S, Oh SM, Lee CW, Ryu JH (2011) Pore structure tuning of mesoporous carbon prepared by direct templating method for application to high rate supercapacitor electrodes. J Electroanalytical Chem 650(2):187–195. doi:10.​1016/​j.​jelechem.​2010.​10.​008 CrossRef
    29.Wu G-P, Yang J, Wang D, Xu R, Amine K, Lu C-X (2014) A novel route for preparing mesoporous carbon aerogels using inorganic templates under ambient drying. Mater Lett 115:1–4CrossRef
    30.Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094. doi:10.​1002/​adma.​200501576 CrossRef
    31.Hamada T, Suzuki K, Kohno T, Sugiura T (2002) Coke powder heat-treated with boron oxide using an Acheson furnace for lithium battery anodes. Carbon 40:2317–2322CrossRef
    32.Rios RB, Silva FWM, Torres AEB, Azevedo DC, Cavalcante CL Jr (2009) Adsorption of methane in activated carbons obtained from coconut shells using H3PO4 chemical activation. Adsorption 15(3):271–277CrossRef
    33.Li L-M, Liu E-H, Li J, Yang Y-J, Shen H-J, Huang Z-Z, Xiang X-X (2010) Polyaniline-based carbon for a supercapacitor electrode. Acta Phys Chim Sin 26(6):1521–1526
    34.Buasri A, Pholprasert C, Suwunnakee N, Phuchainan T, Loryuenyong V (2013) Effects of carbonization temperature and nanoporous silica templating on the synthesis of porous carbon from commercial sugar. Adv Mater Res 650:113–118CrossRef
    35.Sakintuna B, Yürüm Y (2006) Preparation and characterization of mesoporous carbons using a Turkish natural zeolitic template/furfuryl alcohol system. Microporous Mesoporous Mater 93(1–3):304–312. doi:10.​1016/​j.​micromeso.​2006.​03.​013 CrossRef
    36.Liu GY, Guo JM, Wang HJ, Li XM, Wang BS, He Y (2010) Porous carbon prepared by using diatomite as template and furfural alcohol as carbon source. J Honghe Univ 2:002
    37.Li Y, Zhou Z, Gao X, Yan J (2007) A promising sol–gel route based on citric acid to synthesize Li3V2(PO4)3/carbon composite material for lithium ion batteries. Electrochim Acta 52(15):4922–4926. doi:10.​1016/​j.​electacta.​2007.​01.​019 CrossRef
    38.Wang J, Liu X-M, Yang H, X-d Shen (2011) Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol–gel method. J Alloy Compd 509(3):712–718. doi:10.​1016/​j.​jallcom.​2010.​07.​215 CrossRef
    39.Yang S, Feng X, Mullen K (2011) Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv Mater 23(31):3575–3579. doi:10.​1002/​adma.​201101599 CrossRef
    40.Li N, Liu G, Zhen C, Li F, Zhang L, Cheng H-M (2011) Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv Funct Mater 21(9):1717–1722. doi:10.​1002/​adfm.​201002295 CrossRef
    41.Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069
    42.Zhang X, Wang X, Su J, Wang X, Jiang L, Wu H, Wu C (2012) The effects of surfactant template concentration on the supercapacitive behaviors of hierarchically porous carbons. J Power Sources 199:402–408. doi:10.​1016/​j.​jpowsour.​2011.​10.​070 CrossRef
    43.Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050CrossRef
    44.Kakaei K (2015) Decoration of graphene oxide with platinum tin nanoparticles for ethanol oxidation. Electrochim Acta 165:330–337CrossRef
    45.Kakaei K, Hasanpour K (2014) Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J Mater Chem A 2(37):15428–15436CrossRef
    46.Chen XY, Chen C, Zhang ZJ, Xie DH (2013) High performance porous carbon through hard–soft dual templates for supercapacitor electrodes. J Mater Chem A 1(25):7379. doi:10.​1039/​c3ta10841d CrossRef
    47.Gharibi H, Kakaei K, Zhiani M (2010) Platinum nanoparticles supported by a Vulcan XC-72 and PANI doped with trifluoromethane sulfonic acid substrate as a new electrocatalyst for direct methanol fuel cells. J Phys Chem C 114(11):5233–5240CrossRef
    48.Terrones M, Hsu W, Schilder A, Terrones H, Grobert N, Hare J, Zhu Y, Schwoerer M, Prassides K, Kroto H (1998) Novel nanotubes and encapsulated nanowires. Appl Phys A 66(3):307–317CrossRef
    49.Kakaei K, Zhiani M (2013) A new method for manufacturing graphene and electrochemical characteristic of graphene-supported Pt nanoparticles in methanol oxidation. J Power Sources 225:356–363CrossRef
    50.Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8(4):235–246CrossRef
    51.Nemanich R, Solin S, Martin RM (1981) Light scattering study of boron nitride microcrystals. Phys Rev B 23(12):6348CrossRef
    52.Casiraghi C, Robertson J, Ferrari AC (2007) Diamond-like carbon for data and beer storage. Mater Today 10(1):44–53CrossRef
    53.Zhao X, Luo H, Du K, Zhang F, Li Y (2014) Application of attapulgite/maltose system on mesoporous carbon material preparation for electrochemical capacitors. J Appl Electrochem 44(6):719–725. doi:10.​1007/​s10800-014-0688-9 CrossRef
    54.Liu F, Song S, Xue D, Zhang H (2012) Folded structured graphene paper for high performance electrode materials. Adv Mater 24(8):1089–1094. doi:10.​1002/​adma.​201104691 CrossRef
    55.Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L-C (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49(9):2917–2925. doi:10.​1016/​j.​carbon.​2011.​02.​068 CrossRef
    56.Yun J, Kim D, Lee G, Ha JS (2014) All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon 79:156–164. doi:10.​1016/​j.​carbon.​2014.​07.​055 CrossRef
    57.Wang X, Li X, Sun X, Li F, Liu Q, Wang Q, He D (2011) Nanostructured NiO electrode for high rate Li-ion batteries. J Mater Chem 21(11):3571. doi:10.​1039/​c0jm04356g CrossRef
    58.Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of Co3O 4/SnO2@ MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A 3:12852–12857CrossRef
    59.Fang D-L, Chen Z-D, Liu X, Wu Z-F, Zheng C-H (2012) Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors. Electrochim Acta 81:321–329CrossRef
    60.Zhang J, Jin L, Cheng J, Hu H (2013) Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes. Carbon 55:221–232. doi:10.​1016/​j.​carbon.​2012.​12.​030 CrossRef
    61.Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22(33):3723–3728. doi:10.​1002/​adma.​201001029 CrossRef
    62.Gao Y, Wu J, Zhang W, Tan Y, Gao J, Zhao J, Tang B (2014) The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. J Solid State Electrochem 18(11):3203–3207. doi:10.​1007/​s10008-014-2578-9 CrossRef
  • 作者单位:HeMing Luo (1)
    YanZheng Chen (1)
    Bo Mu (1)
    YuanJie Fu (1)
    Xia Zhao (1)
    JianQiang Zhang (1)

    1. College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Physical Chemistry
    Industrial Chemistry and Chemical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1572-8838
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700