用户名: 密码: 验证码:
Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize
详细信息    查看全文
  • 作者:Hitoshi Suzuki (1)
    Jacqueline MacDonald (1)
    Khajamohiddin Syed (2)
    Asaf Salamov (3)
    Chiaki Hori (5)
    Andrea Aerts (3)
    Bernard Henrissat (4)
    Ad Wiebenga (8)
    Patricia A vanKuyk (8)
    Kerrie Barry (3)
    Erika Lindquist (3)
    Kurt LaButti (3)
    Alla Lapidus (3)
    Susan Lucas (3)
    Pedro Coutinho (4)
    Yunchen Gong (7)
    Masahiro Samejima (5)
    Radhakrishnan Mahadevan (1)
    Mamdouh Abou-Zaid (6)
    Ronald P de Vries (8)
    Kiyohiko Igarashi (5)
    Jagjit S Yadav (2)
    Igor V Grigoriev (3)
    Emma R Master (1)
  • 关键词:Phanerochaete carnosa ; Comparative genomics ; Phanerochaete chrysosporium ; Softwood degradation
  • 刊名:BMC Genomics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:13
  • 期:1
  • 全文大小:1432KB
  • 参考文献:1. Galbe M, Zacchi G: A review of the production of ethanol from softwood. / Appl Microbiol Biot 2002, 59:618鈥?28. CrossRef
    2. Ek M, Gellerstedt G, Henriksson G: / Wood Chemistry and Wood Biotechnology. Walter De Gruyter Inc, Berlin; 2009. CrossRef
    3. Palonen H, Thomsen AB, Tenkanen M, Schmidt AS, Viikari U: Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. / Appl Biochem Biotech 2004, 117:1鈥?7. CrossRef
    4. Eriksson KE, Blanchette RA, Ander P: / Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, New York, NY; 1990. CrossRef
    5. Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, / et al.: Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. / Nat Biotechnol 2004, 22:695鈥?00. CrossRef
    6. Vanden Wymelenberg A, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P, / et al.: Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. / Fungal Genet Biol 2006, 43:343鈥?56. CrossRef
    7. Burdsall HH: / A contribution to the taxonomy of the genus Phanerochaete (Corticiaceae, Aphyllophorales). J. Cramer Publisher, Braunschweig, Germany; 1985.
    8. Mahajan S, Master ER: Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. / Appl Microbiol Biotechnol 2010, 86:1903鈥?914. CrossRef
    9. Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D: Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. / Appl Environ Microbiol 2009, 75:4058鈥?068. CrossRef
    10. MacDonald J, Doering M, Canam T, Gong YC, Guttman DS, Campbell MM, Master ER: Transcriptomic Responses of the Softwood-Degrading White-Rot Fungus Phanerochaete carnosa during Growth on Coniferous and Deciduous Wood. / Appl Environ Microbiol 2011, 77:3211鈥?218. CrossRef
    11. Sato S, Feltus FA, Iyer P, Tien M: The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak. / Curr Genet 2009, 55:273鈥?86. CrossRef
    12. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, / et al.: Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. / Proc Natl Acad Sci USA 2009, 106:1954鈥?959. CrossRef
    13. Coutinho PM, Andersen MR, Kolenova K, van Kuyk PA, Benoit I, Gruben BS, Trejo-Aguilar B, Visser H, van Solingen P, Pakula T, / et al.: Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. / Fungal Genet Biol 2009, 46:S161-S169. CrossRef
    14. De Koker TH, Nakasone KK, Haarhof J, Burdsall HH, Janse BJH: Phylogenetic relationships of the genus Phanerochaete inferred from the internal transcribed spacer region. / Mycol Res 2003, 107:1032鈥?040. CrossRef
    15. / CAZY Carbohydrate-Active enZYmes. http://www.cazy.org/
    16. Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, Vries RP: Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. / BMC Genomics 2011, 12:38. CrossRef
    17. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, / et al.: The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. / Science 2011, 333:762鈥?65. CrossRef
    18. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Mart铆nez AT, Otillar R, Spatafora JW, Yadav JS, / et al.: The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. / Science 2012, 336:1715鈥?719. CrossRef
    19. / Fungal Growth Database. www.fung-growth.org
    20. Henrissat B: A Classification of Glycosyl Hydrolases Based on Amino-Acid-Sequence Similarities. / Biochem J 1991, 280:309鈥?16.
    21. Henrissat B, Bairoch A: Updating the sequence-based classification of glycosyl hydrolases. / Biochem J 1996, 316:695鈥?96.
    22. Henrissat B, Davies G: Structural and sequence-based classification of glycoside hydrolases. / Curr Opin Struc Biol 1997, 7:637鈥?44. CrossRef
    23. Dupont C, Roberge M, Shareck F, Morosoli R, Kluepfel D: Substrate-binding domains of glycanases from Streptomyces lividans: characterization of a new family of xylan-binding domains. / Biochem J 1998,330(Pt 1):41鈥?5.
    24. Eudes A, Mouille G, Thevenin J, Goyallon A, Minic Z, Jouanin L: Purification, cloning and functional characterization of an endogenous beta-glucuronidase in Arabidopsis thaliana. / Plant Cell Physiol 2008, 49:1331鈥?341. CrossRef
    25. Shary S, Kapich AN, Panisko EA, Magnuson JK, Cullen D, Hammel KE: Differential expression in Phanerochaete chrysosporium of membrane-associated proteins relevant to lignin degradation. / Appl Environ Microbiol 2008, 74:7252鈥?257. CrossRef
    26. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, / et al.: Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. / Nature 2010, 464:1033鈥?038. CrossRef
    27. Noguchi Y, Sano M, Kanamaru K, Ko T, Takeuchi M, Kato M, Kobayashi T: Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae. / Appl Microbiol Biot 2009, 85:141鈥?54. CrossRef
    28. Tian CG, Beeson WT, Iavarone AT, Sun JP, Marletta MA, Cate JHD, Glass NL: Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. / Proc Natl Acad Sci USA 2009, 106:22157鈥?2162. CrossRef
    29. Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Martinez D, Grigoriev I, / et al.: Comparative Transcriptome and Secretome Analysis of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium. / Appl Environ Microbiol 2010, 76:3599鈥?610. CrossRef
    30. Galazka JM, Tian CG, Beeson WT, Martinez B, Glass NL, Cate JHD: Cellodextrin Transport in Yeast for Improved Biofuel Production. / Science 2010, 330:84鈥?6. CrossRef
    31. / Metabolic network of P. carnosa and P. chrysosporium. www.biozone.utoronto.ca/CASR-Phaca-Phchr.php
    32. Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Record E: FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. / Fungal Genet Biol 2008, 45:638鈥?45. CrossRef
    33. Rodriguez-Rincon F, Suarez A, Lucas M, Larrondo LF, de la Rubia T, Polaina J, Martinez J: Molecular and structural modeling of the Phanerochaete flavido-alba extracellular laccase reveals its ferroxidase structure. / Arch Microbiol 2010, 192:883鈥?92. CrossRef
    34. Doddapaneni H, Chakraborty R, Yadav JS: Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus Phanerochaete chrysosporium: evidence for gene duplications and extensive gene clustering. / BMC Genomics 2005, 6:92. CrossRef
    35. Doddapaneni H, Subramanian V, Yadav JS: Physiological regulation, xenobiotic induction, and heterologous expression of P450 monooxygenase gene pc-3 (CYP63A3), a new member of the CYP63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. / Curr Microbiol 2005, 50:292鈥?98. CrossRef
    36. Khajamohiddin S, Doddapaneni H, Subramanian V, Lam YW, Yadav JS: Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). / Biochem Bioph Res Co 2010, 399:492鈥?97. CrossRef
    37. Khajamohiddin S, Kattamuri C, Thompson TB, Yadav JS: Cytochrome b5 reductase as an active P450 redox enzyme system in Phanerochaete chrysosporium: Atypical properties and in vivo evidences of electron transfer capability to CYP63A2. / Arch Biochem Biophys 2011. In press
    38. Subramanian V, Yadav JS: Role of P450 Monooxygenases in the Degradation of the Endocrine-Disrupting Chemical Nonylphenol by the White Rot Fungus Phanerochaete chrysosporium. / Appl Environ Microbiol 2009, 75:5570鈥?580. CrossRef
    39. Vanden Wymelenberg A, Gaskell J, Mozuch M, BonDurant SS, Sabat G, Ralph J, Skyba O, Mansfield SD, Blanchette RA, Grigoriev IV, / et al.: Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species. / Appl Environ Microbiol 2011, 77:4499鈥?507. CrossRef
    40. Hammel KE, Cullen D: Role of fungal peroxidases in biological ligninolysis. / Curr Opin Plant Biol 2008, 11:349鈥?55. CrossRef
    41. / MycoCosm. http://jgi.doe.gov/fungi
    42. Li B, Nagalla SR, Renganathan V: Cellobiose dehydrogenase from Phanerochaete chrysosporium is encoded by two allelic variants. / Appl Environ Microbiol 1997, 63:796鈥?99.
    43. Schmidt O: / Wood and tree fungi : biology, damage, protection, and use. Springer, Berlin ; New York; 2006.
    44. / DOE Joint Genome Institute. http://www.jgi.doe.gov/
    45. Zerbino DR, Birney E: Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. / Genome Res 2008, 18:821鈥?29. CrossRef
    46. Trong S, LaButti K, Foster B, Han C, Brettin T, Lapidus A: Gap Resolution: A Software Package for Improving Newbler Genome Assemblies. / Proceedings of the 4th Annual Meeting on 鈥淎nnual Meeting on Sequencing Finishing, Analysis in the Future 2009., 1:
    47. Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, / et al.: Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. / Nat Biotechnol 2007, 25:319鈥?26. CrossRef
    48. / Phanerochaete carnosa HHB-10118-Sp v1.0. http://www.jgi.doe.gov/Pcarnosa
    49. / RepeatMasker. http://www.repeatmasker.org/
    50. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase update, a database of eukaryotic repetitive elements. / Cytogenet Genome Res 2005, 110:462鈥?67. CrossRef
    51. Lowe TM, Eddy SR: tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. / Nucleic Acids Res 1997, 25:955鈥?64.
    52. Salamov AA, Solovyev VV: Ab initio gene finding in Drosophila genomic DNA. / Genome Res 2000, 10:516鈥?22. CrossRef
    53. Isono K, McIninch JD, Borodovsky M: Characteristic features of the nucleotide sequences of yeast mitochondrial ribosomal protein genes as analyzed by computer program GeneMark. / DNA Res 1994, 1:263鈥?69. CrossRef
    54. Birney E, Durbin R: Using GeneWise in the Drosophila annotation experiment. / Genome Res 2000, 10:547鈥?48. CrossRef
    55. / NCBI BLAST. http://www.ncbi.nlm.nih.gov/BLAST/
    56. / SoftBerry. http://www.softberry.com/
    57. Kent WJ: BLAT - The BLAST-like alignment tool. / Genome Res 2002, 12:656鈥?64.
    58. Nielsen H, Engelbrecht J, Brunak S, vonHeijne G: Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. / Protein Eng 1997, 10:1鈥?. CrossRef
    59. Melen K, Krogh A, von Heijne G: Reliability measures for membrane protein topology prediction algorithms. / J Mol Biol 2003, 327:735鈥?44. CrossRef
    60. Zdobnov EM, Apweiler R: InterProScan - an integration platform for the signature-recognition methods in InterPro. / Bioinformatics 2001, 17:847鈥?48. CrossRef
    61. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic Local Alignment Search Tool. / J Mol Biol 1990, 215:403鈥?10.
    62. / DeCypherSW. http://www.timelogic.com/decypher_sw.html
    63. / SwissProt. http://www.expasy.org/sprot/
    64. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking genomes to life and the environment. / Nucleic Acids Res 2008, 36:D480-D484. CrossRef
    65. Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, / et al.: A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. / Genome Biol 2004., 5:
    66. / ExPASy. http://www.expasy.org/enzyme/
    67. / The Gene Ontology. http://www.geneontology.org/
    68. Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. / Nucleic Acids Res 2002, 30:1575鈥?584. CrossRef
    69. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. / Nucleic Acids Res 2009, 37:D233鈥?38. CrossRef
    70. Yoshida M, Igarashi K, Wada M, Kaneko S, Suzuki N, Matsumura H, Nakamura N, Ohno H, Samejima M: Characterization of carbohydrate-binding cytochrome b562 from the white-rot fungus Phanerochaete chrysosporium. / Appl Environ Microbiol 2005, 71:4548鈥?555. CrossRef
    71. / Phanerochaete chrysosporium v2.0. http://www.jgi.doe.gov/whiterot
    72. / MAFFT version 6. http://mafft.cbrc.jp/alignment/server/
    73. / FigTree. http://tree.bio.ed.ac.uk/software/figtree/
    74. / The GENESTREAM network server. http://xylian.igh.cnrs.fr/bin/align-guess.cgi
    75. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. / Mol Biol Evol 2007, 24:1596鈥?599. CrossRef
    76. Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L, / et al.: Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. / Brief Bioinform 2010, 11:40鈥?9. CrossRef
    77. Waterhouse A: Detrermination of total phenolics by folin-ciocalteau colorimetry. / Curr Prot in Food Anal Chem 2002, I1.1.1-I1.1.8.
    78. Ohm RA, de Jong JF, Lugones LG, Aerts A, Kothe E, Stajich JE, de Vries RP, Record E, Levasseur A, Baker SE, / et al.: Genome sequence of the model mushroom Schizophyllum commune. / Nat Biotechnol 2010, 28:957-U910. CrossRef
    79. Stajich JE, Wilke SK, Ahren D, Au CH, Birren BW, Borodovsky M, Burns C, Canback B, Casselton LA, Cheng CK, / et al.: Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). / Proc Natl Acad Sci USA 2010, 107:11889鈥?1894. CrossRef
    80. Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, / et al.: The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. / Nature 2008, 452:88鈥?2. CrossRef
    81. Faix O: Fourier Transform Infrared Spectroscopy. In / Methods in Lignin Chemistry. Edited by: Lin SY, Dence CW. Springer-Verlag, Berlin; 1992:83鈥?09. CrossRef
    82. Faix O, Beinhoff O: FTIR Spectra of Milled Wood Lignins and Lignin Polymer Models (DHP's) with Enhanced Resolution Obtained by Deconvolution. / J Wood Chem Tech 1988, 8:505鈥?22. CrossRef
    83. Popescu CM, Popescu MC, Singurel G, Vasile C, Argyropoulos DS, Willfor S: Spectral characterization of eucalyptus wood. / Appl Spectrosc 2007, 61:1168鈥?177. CrossRef
    84. Bermingham S, Maltby L, Cooke R: A critical assessment of the validity of ergosterol as an indicator of fungal biomass. / Mycol Res 1995, 99:479鈥?84. CrossRef
    85. Boyle C, Kropp B: Development and comparison of methods for measuring growth of filamentous fungi on wood. / Can J Microbiol 1992, 38:1053鈥?060. CrossRef
    86. Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttila M, Ruohonen L: Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. / Appl Environ Microbiol 2007, 74:1041鈥?052.
  • 作者单位:Hitoshi Suzuki (1)
    Jacqueline MacDonald (1)
    Khajamohiddin Syed (2)
    Asaf Salamov (3)
    Chiaki Hori (5)
    Andrea Aerts (3)
    Bernard Henrissat (4)
    Ad Wiebenga (8)
    Patricia A vanKuyk (8)
    Kerrie Barry (3)
    Erika Lindquist (3)
    Kurt LaButti (3)
    Alla Lapidus (3)
    Susan Lucas (3)
    Pedro Coutinho (4)
    Yunchen Gong (7)
    Masahiro Samejima (5)
    Radhakrishnan Mahadevan (1)
    Mamdouh Abou-Zaid (6)
    Ronald P de Vries (8)
    Kiyohiko Igarashi (5)
    Jagjit S Yadav (2)
    Igor V Grigoriev (3)
    Emma R Master (1)

    1. Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
    2. Environmental Genetics and Molecular Toxicology Division, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0056, USA
    3. US Department of Energy Joint Genome Institute, 2800 Mitchell Dr., Walnut Creek, California, 94598, USA
    5. Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, l-l-l, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
    4. Architecture et Fonction des Macromol茅cules Biologiques, Aix-Marseille Universit茅, CNRS, UMR 6098, 163 Avenue de Luminy, 13288, Marseille, France
    8. CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
    7. Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B3, Canada
    6. Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, P6A 2E5, Canada
文摘
Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700