用户名: 密码: 验证码:
Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics
详细信息    查看全文
  • 作者:Géraldine Bastien (13) (14) (15)
    Grégory Arnal (13) (14) (15)
    Sophie Bozonnet (13) (14) (15)
    Sandrine Laguerre (13) (14) (15)
    Fernando Ferreira (13) (14) (15)
    Régis Fauré (13) (14) (15)
    Bernard Henrissat (16)
    Fabrice Lefèvre (17)
    Patrick Robe (17)
    Olivier Bouchez (18) (19)
    Céline Noirot (20)
    Claire Dumon (13) (14) (15)
    Michael O’Donohue (13) (14) (15)
  • 关键词:Functional metagenomics ; Fungus ; growing termite ; Glycoside hydrolases ; Hemicellulases ; Biomass degradation ; Biorefinery
  • 刊名:Biotechnology for Biofuels
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:6
  • 期:1
  • 全文大小:666 KB
  • 参考文献:1. Kambhampati S, Eggleton P: Taxonomy and phylogeny of termites. In / Termites: Evolution, Socialty, Symbioses, Ecology. Edited by: Abe T, Bignell DE, Higashi M. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2000:1-3.
    2. Rouland-Lefèvre C: Symbiosis with fungi. In / Termites: Evolution, Sociality, Symbioses, Ecology. Edited by: Abe T, Bignell DE, Higashi M. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2000:289-06.
    3. Hyodo F, Tayasu I, Inoue T, Azuma J-I, Kudo T, Abe T: Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae : Isoptera ). / Function Ecol 2003, 17:186-93. CrossRef
    4. Nobre T, Aanen DK: Fungiculture or termite husbandry? The ruminant hypothesis. / Insects 2012, 3:307-23. CrossRef
    5. K?nig H: Bacillus species in the intestine of termites and other soil invertebrates. / J Appl Microbiol 2006, 101:620-27. CrossRef
    6. Ohkuma M, Noda S, Hongoh Y, Kudo T: Coevolution of symbiotic systems of termites and their gut microorganisms. 2001, 41:73-4.
    7. Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T: Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. / Appl Environ Microbiol 2005, 71:6590-599. CrossRef
    8. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, Mchardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Garcia Martin H, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernandez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR: Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. / Nature 2007, 450:560-65. CrossRef
    9. Long Y-H, Xie L, Liu N, Yan X, Li M-H, Fan M-Z, Wang Q: Comparison of gut-associated and nest-associated microbial communities of a fungus-growing termite ( Odontotermes yunnanensis ). / Insect Sci 2010, 17:265-76. CrossRef
    10. Liu N, Yan X, Zhang M, Xie L, Wang Q, Huang Y, Zhou X, Wang S, Zhou Z: Microbiome of fungus-growing termites : a new reservoir for mining lignocellulase genes. / Appl Environ Microbiol 2011, 77:48-6. CrossRef
    11. Li L-L, McCorkle SR, Monchy S, Taghavi S, Van der Lelie D: Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. / Biotechnol Biofuels 2009, 2:10. CrossRef
    12. Lorenz P, Eck J: Metagenomics and industrial applications. / Nature Rev Microbiol 2005, 3:510-16. CrossRef
    13. Tasse L, Bercovici J, Pizzut-Serin S, Robe P, Tap J, Klopp C, Cantarel BL, Coutinho PM, Henrissat B, Monsan P, Remaud-Simeon M, Leclerc M, Doré J, Remaud-Siméon M, Potocki-Véronèse G: Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. / Genome Res 2010, 20:1605-612. CrossRef
    14. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI: A core gut microbiome in obese and lean twins. / Nature 2009, 457:480-84. CrossRef
    15. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Consortium M, Bork P, Ehrlich SD, Wang J: A human gut microbial gene catalogue established by metagenomic sequencing. / Nature 2010, 464:59-5. CrossRef
    16. Simon C, Daniel R: Achievements and new knowledge unraveled by metagenomic approaches. / Appl Microbiol Biotechnol 2009, 85:265-76. CrossRef
    17. Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, S?rlie M, Eijsink VGH: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. / Science 2010, 330:219-22. CrossRef
    18. Kumar R, Wyman CE: Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. / Biotechnol Prog 2009, 25:302-14. CrossRef
    19. Qing Q, Yang B, Wyman CE: Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. / Bioresour Technol 2010, 101:9624-630. CrossRef
    20. Dumon C, Song L, Bozonnet S, Fauré R, O’Donohue MJ: Progress and future prospects for pentose-specific biocatalysts in biorefining. / Process Biochem 2012, 47:346-57. CrossRef
    21. Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic data. / Genome Res 2007, 17:377-86. CrossRef
    22. Mitra S, Klar B, Huson DH: Visual and statistical comparison of metagenomes. / Bioinformatics 2009, 25:1849-855. CrossRef
    23. Mathew GM, Ju Y-M, Lai C-Y, Mathew DC, Huang CC: Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. / FEMS Microbiol Ecol 2012, 79:504-17. CrossRef
    24. Hongoh Y: Diversity and genomes of uncultured microbial symbionts in the termite gut. / Biosci Biotechnol Biochem 2010, 74:1145-151. CrossRef
    25. Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG, Pinto-Tomá?s AA, Foster CE, Pauly M, Weimer PJ, Barry KW, Goodwin LA, Bouffard P, Li L, Osterberger J, Harkins TT, Slater SC, Donohue TJ, Currie CR: An insect herbivore microbiome with high plant biomass-degrading capacity. / PLoS Genet 2010,6(9):e1001129. CrossRef
    26. Uchiyama T, Miyazaki K: Functional metagenomics for enzyme discovery: challenges to efficient screening. / Curr Opin Biotechnol 2009, 20:616-22. CrossRef
    27. Brulc JM, Antonopoulos DA, Berg Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA, Miller MEB: Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. / Proc Natl Acad Sci USA 2009, 106:1948-953. CrossRef
    28. Allgaier M, Reddy A, Park JI, Ivanova N, D’haeseleer P, Lowry S, Sapra R, Hazen TC, Simmons BA, VanderGheynst JS, Hugenholtz P: Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. / PLoS One 2010, 5:e8812. CrossRef
    29. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala HH, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM: Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. / Science 2011, 331:463-67. CrossRef
    30. Bignell DE, Eggleton P: On the elevated intestinal pH of higher termites (Isoptera: Termitidae). / Insectes Sociaux 1995, 42:57-9. CrossRef
    31. Korb J, Linsenmair KE: Thermoregulation of termite mounds: what role does ambient temperature and metabolism of the colony play? / Insectes Sociaux 2000, 47:357-63. CrossRef
    32. Mastropaolo MD, Thorson ML, Stevens AM: Comparison of Bacteroides thetaiotaomicron and Escherichia coli 16S rRNA gene expression signals. / Microbiology 2009, 155:2683-693. CrossRef
    33. Inácio JM, De Sá-Nogueira I: Characterization of abn2 (yxiA), encoding a Bacillus subtilis GH43 arabinanase, Abn2, and its role in arabino-polysaccharide degradation. / J Bacteriol 2008, 190:4272-280. CrossRef
    34. Shulami S, Raz-Pasteur A, Tabachnikov O, Gilead-Gropper S, Shner I, Shoham Y: The L-arabinan utilization system of Geobacillus stearothermophilus . / J Bacteriol 2011, 193:2838-850. CrossRef
    35. Dodd D, Mackie RI, Cann IKO: Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes . / Mol Microbiol 2011, 79:292-04. CrossRef
    36. Gabor EM, Alkema WBL, Janssen DB: Quantifying the accessibility of the metagenome by random expression cloning techniques. / Environ Microbiol 2004, 6:879-86. CrossRef
    37. Taupp M, Mewis K, Hallam SJ: The art and design of functional metagenomic screens. / Curr Opin Biotechnol 2011, 22:465-72. CrossRef
    38. Connétable S, Robert A, Bordereau C: Dispersal flight and colony development in the fungus-growing termites Pseudacanthotermes spiniger and P. militaris . / Insectes Sociaux 2012, 59:269-77. CrossRef
    39. Courtois S, Cappellano CM, Ball M, Francou F-X, Normand P, Helynck G, Martinez A, Kolvek SJ, Hopke J, Osburne MS, August PR, Nalin R, Guérineau M, Jeannin P, Simonet P, Pernodet J-L: Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. / Appl Envion Microbiol 2003, 69:49-5. CrossRef
    40. Ginolhac A, Jarrin C, Gillet B: Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. / Appl Environ Microbiol 2004, 70:5522-527. CrossRef
    41. Berlin W, Sauer B: In situ color detection of α -L-arabinofuranosidase, a “no-background-reporter gene, with 5-bromo-3chloro-indolyl- α-L-arabinofuranoside. / Anal Biochem 1996, 175:171-75. CrossRef
    42. Mori M, Ito Y, Ogawa T: Total synthesis of the mollu-series glycosyl ceramides - alpha-D-manp-(1-]3)-beta-D-manp-(1-]4)-beta-D-glcp-(1-]1)-CER and alpha-D-manp-(1-]3)-[beta-D-xylp-(1-]2)]-beta-D-manp-(1-]4)-beta-D-glcpP-(1-]1)-CER. / Carbohydr Res 1990, 195:199-24. CrossRef
    43. Gottlieb H, Kotlyar V, Nudelman A: NMR chemical shifts of common laboratory solvents as trace impurities. / J Org Chem 1997, 62:7512-515. CrossRef
    44. Huang X, Madan A: CAP3: A DNA sequence assembly program. / Genome Res 1999, 9:868-77. CrossRef
    45. Noguchi H, Park J, Takagi T: MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. / Nucleic Acids Res 2006, 34:5623-630. CrossRef
    46. Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. / Nucleic Acids Res 2000, 28:33-6. CrossRef
    47. Florian M, Michael K: Extension of the COG and arCOG databases by amino acid and nucleotide sequences. / BMC Bioinforma 2008, 9:479. CrossRef
  • 作者单位:Géraldine Bastien (13) (14) (15)
    Grégory Arnal (13) (14) (15)
    Sophie Bozonnet (13) (14) (15)
    Sandrine Laguerre (13) (14) (15)
    Fernando Ferreira (13) (14) (15)
    Régis Fauré (13) (14) (15)
    Bernard Henrissat (16)
    Fabrice Lefèvre (17)
    Patrick Robe (17)
    Olivier Bouchez (18) (19)
    Céline Noirot (20)
    Claire Dumon (13) (14) (15)
    Michael O’Donohue (13) (14) (15)

    13. Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, Toulouse, F-31077, France
    14. INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, F-31400, France
    15. CNRS, UMR5504, Toulouse, F-31400, France
    16. University Aix Marseille, CNRS, UMR6098, Marseille, F-13288, France
    17. LibraGen, Batiment Canal Biotech I, 3 rue des Satellites, Toulouse, F-31400, France
    18. INRA, UMR444 Laboratoire de Génétique Cellulaire, Castanet-Tolosan, F31326, France
    19. GeT-PlaGe, Genotoul, Centre INRA, Castanet-Tolosan, F31326, France
    20. INRA, UR 875, Bioinfo, GenoToul, 24 Chemin de Borderouge, CS 52627, Castanet Tolosan, F-31326, France
  • ISSN:1754-6834
文摘
Background The metagenomic analysis of gut microbiomes has emerged as a powerful strategy for the identification of biomass-degrading enzymes, which will be no doubt useful for the development of advanced biorefining processes. In the present study, we have performed a functional metagenomic analysis on comb and gut microbiomes associated with the fungus-growing termite, Pseudacanthotermes militaris. Results Using whole termite abdomens and fungal-comb material respectively, two fosmid-based metagenomic libraries were created and screened for the presence of xylan-degrading enzymes. This revealed 101 positive clones, corresponding to an extremely high global hit rate of 0.49%. Many clones displayed either β-d-xylosidase (EC 3.2.1.37) or α-l-arabinofuranosidase (EC 3.2.1.55) activity, while others displayed the ability to degrade AZCL-xylan or AZCL-β-(1,3)-β-(1,4)-glucan. Using secondary screening it was possible to pinpoint clones of interest that were used to prepare fosmid DNA. Sequencing of fosmid DNA generated 1.46 Mbp of sequence data, and bioinformatics analysis revealed 63 sequences encoding putative carbohydrate-active enzymes, with many of these forming parts of sequence clusters, probably having carbohydrate degradation and metabolic functions. Taxonomic assignment of the different sequences revealed that Firmicutes and Bacteroidetes were predominant phyla in the gut sample, while microbial diversity in the comb sample resembled that of typical soil samples. Cloning and expression in E. coli of six enzyme candidates identified in the libraries provided access to individual enzyme activities, which all proved to be coherent with the primary and secondary functional screens. Conclusions This study shows that the gut microbiome of P. militaris possesses the potential to degrade biomass components, such as arabinoxylans and arabinans. Moreover, the data presented suggests that prokaryotic microorganisms present in the comb could also play a part in the degradation of biomass within the termite mound, although further investigation will be needed to clarify the complex synergies that might exist between the different microbiomes that constitute the termitosphere of fungus-growing termites. This study exemplifies the power of functional metagenomics for the discovery of biomass-active enzymes and has provided a collection of potentially interesting biocatalysts for further study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700