用户名: 密码: 验证码:
Characteristics and potential pedogenetic processes of a Technosol developing on iron industry deposits
详细信息    查看全文
  • 作者:Hermine Huot (1) (2)
    Marie-Odile Simonnot (2)
    Philippe Marion (3)
    Jacques Yvon (3)
    Philippe De Donato (3)
    Jean-Louis Morel (1)
  • 关键词:Andosols ; Iron industry deposits ; Low periodic order minerals ; Pedogenetic processes ; Technosol
  • 刊名:Journal of Soils and Sediments
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:13
  • 期:3
  • 页码:555-568
  • 全文大小:515KB
  • 参考文献:1. Baize D, Girard MC (2009) Référentiel pédologique 2008. Editions Quae, Versailles
    2. Bartoli F, Begin JC, Burtin G, Schouller E (2007) Shrinkage of initially very wet soil blocks, cores and clods from a range of European Andosol horizons. Eur J Soil Sci 58:78-92
    3. Bourgault RR, Rabenhorst MC (2011) Genesis and characterization of manganiferous soils in the Eastern Piedmont, USA. Geoderma 165:84-4 CrossRef
    4. Buurman P, Bartoli F, Basile A, Füleky G, Garcia Rodeja E, Hernandez Moreno J, Madeira M (2007) The physico-chemical data base. In: Arnalds et al (eds) Soils of volcanic regions in Europe. Springer, Berlin, pp 271-87 CrossRef
    5. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostand Geoanalytical Res 25:187-98 CrossRef
    6. Chadwick OA, Chorover J (2001) The chemistry of pedogenic thresholds. Geoderma 100:321-53 CrossRef
    7. Crow P (2008) Mineral weathering in forest soils and its relevance to the preservation of the buried archaeological resource. J Archaeol Sci 35:2262-273 CrossRef
    8. Duchaufour P (1991) Pédologie—sol, végétation, environnement, 3eth edn. Abrégés Masson, Paris
    9. El Khalil H, Schwartz C, Elhamiani O, Kubiniok J, Morel JL, Boularbah A (2008) Contribution of technic materials to the mobile fraction of metals in urban soils in Marrakech (Morocco). J Soils Sediment 8:17-2 CrossRef
    10. Filby RH, Van Berkel GJ (1987) Geochemistry of metal complexes in petroleum, source rocks, and coals: an overview. In: Filby RH, Branthaver JF (eds) Metal complexes in fossil fuels. American Chemical Society, Washington, pp 2-9 CrossRef
    11. Hartmann P, Fleige H, Horn R (2010) Changes in soil physical properties of forest floor horizons due to long-term deposition of lignite fly ash. J Soils Sediment 10:231-39 CrossRef
    12. Howard JL, Olszewska D (2010) Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan. Environ Pollut 159:754-61 CrossRef
    13. IUSS Working Group WRB (2006) World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome
    14. Jeanroy E (1983) Diagnostic des formes du fer dans les pédogenèses tempérées: evaluation par les réactifs chimiques d’extraction et apports de la spectrométrie M?ssbauer. Dissertation, University of Nancy
    15. Jenny H (1941) Factors of soil formation. A system of quantitative pedology. McGraw-Hill, New York
    16. Joussemet R, Yvon J, Marion P (2001) Inertage de l’arsenoc en milieu minier. Revue de l’industrie minérale. Les Tech, Numéro Spéc ?Arsenic? 11:102-10
    17. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, Boca Raton
    18. Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods. In: Klute (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn. Soil Science Society of America, Madison, pp 687-34
    19. Mansfeldt T, Dohrmann R (2001) Identification of a crystalline cyanide-containing compound in blast furnace sludge deposits. J Environ Qual 30:1927-932 CrossRef
    20. Mansfeldt T, Dohrmann R (2004) Chemical and mineralogical characterization of blast-furnace sludge from an abandoned landfill. Environ Sci Technol 38:5977-984 CrossRef
    21. McKenzie R (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Soil Res 18(1):61-3 CrossRef
    22. Mehra O, Jackson M (1960) Iron oxide removal from soils and clays by a dithionite–citrate system with sodium bicarbonate buffer. Clays Clay Miner 7:317-27 CrossRef
    23. Meijer EL, Buurman P, Fraser A, Garcia Rodeja E (2007) Extractibility and FTIR-characteristics of poorly-ordered minerals in a collection of volcanic ash soils. In: Arnalds (ed) Soils of volcanic regions in Europe. Springer, Berlin, pp 155-79 CrossRef
    24. Monserie MF, Watteau F, Villemin G, Ouvrard S, Morel JL (2009) Technosol genesis: identification of organo-mineral associations in a young Technosol derived from coking plant waste materials. J Soils Sediment 9:537-46. doi:10.1007/s11368-009-0084-y CrossRef
    25. Morel J, Schwartz C, Florentin L, De Kimpe C (2005) Urban soils. In: Hillel D (ed) Encyclopedia of soils in the environment, vol 4. Elsevier, Oxford, pp 202-08
    26. Musy A, Soutter M (1991) Physique du sol. Presses Polytechniques et Universitaires Romandes, Lausanne
    27. Rossiter DG (2007) Classification of urban and industrial soils in the World Reference Base for Soil Resources. J Soils Sediment 7:96-00 CrossRef
    28. Sauer D, Burghardt W (2006) The occurrence and distribution of various forms of silica and zeolites in soils developed from wastes of iron production. Catena 65:247-57 CrossRef
    29. Sauvé S, Hendershot W, Allen EA (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34(7):1125-131 CrossRef
    30. Schafer W, Nielsen G, Nettleton W (1980) Minesoil genesis and morphology in a spoil chronosequence in Montana. Soil Sci Soc Am J 44:802-07 CrossRef
    31. Scholtus N, Leclerc E, De Donato P, Morel JL, Simonnot MO (2009) Eluto-frontal chromatography to simulate chemical weathering of COx by low-molecular-weight organic compounds and early pedogenesis processes. Eur J Soil Sci 60:71-3 CrossRef
    32. Schwartz C, Florentin L, Charpentier D, Muzika S, Morel JL (2001) Le pédologue en milieux industriels et urbains. I. Sols d’une friche industrielle. Etude et Gestion des Sols 8:135-48
    33. Séré G, Schwartz C, Ouvrard S, Renat JC, Watteau F, Villemin G, Morel JL (2010) Early pedogenic evolution of constructed Technosols. J Soils Sediment 10:1246-254 CrossRef
    34. Simonson RW (1959) Outline of a generalized theory of soil genesis. Soil Sci Soc Am Proc 23:152-56 CrossRef
    35. Soji S, Fujiwara Y (1984) Active aluminium and iron in the humus horizons of andosols from northeastern Japan: their forms, properties, and significance in clay weathering. Soil Sci 137:216-26 CrossRef
    36. Sourkova M, Frouz J, Santruckova H (2005) Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma 124:203-14 CrossRef
    37. Sposito G (1989) The chemistry of soils. Oxford University Press, Oxford
    38. Taboada T, Garcia C, Martinez-Cortizas A, Novoa JC, Pontevedra X, Garcia Rodeja G (2007) Chemical weathering of reference European volcanic soils. In: Arnalds O et al (eds) Soils of volcanic regions in Europe. Springer, Berlin, pp 307-23 CrossRef
    39. Tamm O (1922) Eine method zur bestimmung der anorganishen komponenten des Golkomplex in boden. Medd Statens Skogforsoksanst 19:385-04
    40. Truffaut E (2004) La fabrication du ferro-manganèse au haut-fourneau en France, 1875-003. Naissance, vie et mort d’un procédé industriel. http://soleildacier.ouvaton.org/savoir/fr/DNA02-S2-W.pdf
    41. Uzarowicz L, Skiba S (2011) Technogenic soils developed on mine spoils containing iron sulphides: mineral transformations as an indicator of pedogenesis. Geoderma 163:95-08 CrossRef
    42. Vassilev SV, Vassileva CG (1996) Mineralogy of combustion wastes from coal-fired power stations. Fuel Process Technol 47:261-80 CrossRef
    43. Walker AL (1983) The effects of magnetite on oxalate- and dithionite-extractable iron. 1. Soil Sci Soc Am J 47:1022-026 CrossRef
    44. Wang J, Yamada O, Nakazato T, Zhang ZG, Suzuki S, Sakanishi K (2008) Statistical analysis of the concentrations of trace elements in a wide diversity of coals and its implications for understanding elemental modes of occurrence. Fuel 87:2211-222 CrossRef
    45. Zevenbergen C, Bradley JP, Van Reeuwijk LP, Shyam AK, Hjelmar O, Comans RNJ (1999) Clay formation and metal fixation during weathering of coal fly ash. Environ Sci Technol 33:3405-409 CrossRef
    46. Zikeli S, Jahn R, Kastler M (2002) Initial soil development in lignite ash landfills and settling ponds in Saxony-Anhalt, Germany. J Plant Nutr Soil Sci 165:530-36 CrossRef
    47. Zikeli S, Kastler M, Jahn R (2005) Classification of anthrosols with vitric/andic properties derived from lignite ash. Geoderma 124:253-65 CrossRef
  • 作者单位:Hermine Huot (1) (2)
    Marie-Odile Simonnot (2)
    Philippe Marion (3)
    Jacques Yvon (3)
    Philippe De Donato (3)
    Jean-Louis Morel (1)

    1. Laboratoire Sols et Environnement, Université de Lorraine-INRA, 2 avenue de la Forêt de Haye, BP 172, 54505, Vand?uvre lès Nancy cedex, France
    2. Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, 1, rue Grandville, BP 20451, 54001, Nancy cedex, France
    3. Laboratoire Environnement et Minéralurgie, Université de Lorraine-CNRS, 15 avenue du Charmois, BP 40, 54501, Vand?uvre-lès-Nancy cedex, France
  • ISSN:1614-7480
文摘
Purpose Technosols include soils dominated or strongly influenced by human-made materials. Similarly to natural soils, technogenic parent materials submitted to environmental factors undergo weathering and transformation processes. But the pedogenesis of Technosols remains little known. With this aim in view, a Technosol developing on purely technogenic materials resulting from an iron industry was thoroughly characterized in order to discuss the pedogenetic evolution of this Technosol using knowledge about the pedogenesis of natural soils. Materials and methods The studied site was a former settling pond where mainly sludge generated by wet cleaning of blast furnace fumes was dumped probably until the mid-twentieth century. Thereafter, the pond has been colonized by vegetation and is covered by a diversified forest. The soil was composed of contrasted layers. A 20-cm organic layer has developed at the surface. Samples were collected in the first 2?m which are under root influence. Elemental composition, agronomic parameters, mineralogy, as well as the physical and hydraulic properties of the soil materials were characterized. Results and discussion Some characteristics of the Technosol, e.g. elemental composition, mineralogy or profile stratification, resulted mainly from industrial processes. However, some properties of the Technosol can be compared with natural soils. Particularly, the presence of low periodic order minerals and physical and hydraulic properties were analogous to the properties of Andosols. However, alkaline pH and the carbonate contents made the Technosol closer to carbonated soils. Moreover, the presence of Mn oxides, high porosity and water retention were also encountered in Mn-bearing soils. Early pedogenic processes, e.g. development of organic surface layer and signs of mineral weathering, were observed. But transfers seemed to be rather limited and/or slow in the profile. However, the physical and chemical properties, e.g. high water retention and high pH, were rather favourable to element retention. Conclusions The evolution of the Technosol seems to be still limited in the profile, which could be explained by the high retention capacity of the soil. The presence of highly reactive mineral phases, such as low periodic order Mn oxides or allophane-like minerals, with high contents of carbonates is rarely encountered in the natural environment and may suggest an important potential for pedogenic evolution, which could be directed by the balance between the weathering processes of these phases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700