用户名: 密码: 验证码:
Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk
详细信息    查看全文
  • 作者:Diego Hernández-Saavedra ; Iza F. Pérez-Ramírez
  • 关键词:Medicinal herbs ; Obesity ; Cardiovascular risk ; Oil tolerance test
  • 刊名:Medicinal Chemistry Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1
  • 页码:163-172
  • 全文大小:638 KB
  • 参考文献:Allison DB, Paultre F, Maggio C, Mezzitis N, Pi-Sunyer FX (1995) The use of areas under curves in diabetes research. Diab Care 18:245–250CrossRef
    Babu PVA, Sabitha KE, Shyamaladevi CS (2006) Green tea impedes dyslipidemia, lipid peroxidation, protein glycation and ameliorates Ca2+-ATPase and Na+/K+-ATPase activity in the heart of streptozotocin-diabetic rats. Chemico-Biol Interact 162:157–164CrossRef
    Blüher M (2009) Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117:241–250PubMed CrossRef
    Carrasco F, Moreno M, Irribarra V, Rodríguez L, Martin MA, Alarcón A, Mizón C, Echenique C, Saavedra V, Pizarro T, Atalah E (2008) Evaluation of a pilot intervention program for overweight and obese adults at risk of type 2 diabetes. Rev Med Chile 136:13–21PubMed
    Chen N, Bezzina R, Hinch E, Lewandowski PA, Cameron-Smith D, Mathai ML, Sinclair AJ, Begg DP, Wark JD, Weisinger HS, Weisinger RS (2009) Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr Res 29:784–793PubMed CrossRef
    Devaraj S, Singh U, Jialal I (2009) The evolving role of C-reactive protein in atherothrombosis. Clin Chem 55:229–238PubMed PubMedCentral CrossRef
    Do Prado ACP, Manion BA, Seetharaman K, Deschamps FC, Arellano DB, Block JM (2013) Relationship between antioxidant properties and chemical composition of the oil and the shell of pecan nuts [Caryaillinoinensis (Wangenh) C. Koch]. Ind Crops Prod 45:64–73CrossRef
    Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J (2000) Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 24:252–258PubMed CrossRef
    El-Soud NHA, Khalil MY, Hussein JS, Oraby FSH, Farrag ARH (2007) Antidiabetic effects of fenugreek alkaloid extract in streptozotocin induced hyperglycemic rats. J Appl Sci Res 3:1073–1083
    Figueroa-Pérez MG, Rocha-Guzmán NE, Mercado-Silva E, Loarca-Piña G, Reynoso-Camacho R (2014) Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions. Food Chem 156:273–278PubMed CrossRef
    Gettler AO, Sunshine I (1951) Colorimetric determination of alkaloids in tissues by means of methyl orange. Anal Chem 23:779–781CrossRef
    Gray DE, Rottinghaus GE, Garrett HE, Pallardy SG (2000) Simultaneous determination of the predominant hyperforins and hypericins in St. John’s Wort (Hypericum perforatum L.) by liquid chromatography. J AOAC Int 83:944–949PubMed
    Hiai S, Oura H, Nakajima T (1976) Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med 29:116–122PubMed CrossRef
    Hsu CL, Wu CH, Huang SL, Yen GC (2009) Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. J Agric Food Chemi 57:425–431CrossRef
    Hu XQ, Wang YM, Wang JF, Xue Y, Li ZJ, Nagao K, Yanagita T, Xue CH (2010) Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARa and SREBP-1c signaling. Lipids Health Dis 9:25–34PubMed PubMedCentral CrossRef
    Husain GM, Chatterjee SS, Singh PN, Kumar V (2011) Hypolipidemic and antiobesity-like activity of standardized extract of Hypericum perforatum L. in rats. ISRN Pharmacol 2011:1–7CrossRef
    Kianbakht S, Abasi B, Perham M, Hashem-Dabaghian F (2011) Antihyperlipidemic effects of Salvia officinalis L. leaf extract in patients with hyperlipidemia: a randomized double-blind placebo-controlled clinical trial. Phytother Res 25:1849–1853PubMed CrossRef
    Klop B, Elte JWF, Cabezas MC (2013) Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 5:1218–1240PubMed PubMedCentral CrossRef
    Kurkin VA, Sharova OV (2007) Flavonoids from Calendula officinalis flowers. Chem Nat Compd 43:216–217CrossRef
    Liu Y, Hu M (2002) Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. Drug Metabol Dispos 30:370–377CrossRef
    Lomas-Soria C, Pérez-Ramírez IF, Caballero-Pérez J, Guevara-González RG, Guevara-Olvera L, Loarca-Piña G, Guzmán-Maldonado HS, Reynoso-Camacho R (2015) Cooked common beans (Phaseolus vulgaris L.) modulates renal genes in streptozotocin-induced diabetic rats. J Nutr Biochem 26:761–768PubMed CrossRef
    Mathieu P, Lemieux I, Després JP (2010) Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Therapeut 87:407–416CrossRef
    McAnuff MA, Harding WW, Omoruyi FO, Jacobs H, Morrison EY, Asemota HN (2005) Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food Chem Toxicol 43:1667–1672PubMed CrossRef
    McDougall GJ, Kulkarni NN, Stewart D (2009) Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem 115:193–199CrossRef
    Muley BP, Khadabadi SS, Banarase NB (2009) Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): a review. Trop J Pharm Res 8:455–465CrossRef
    Park HJ, Kim DH, Choi JW, Park JH, Han YN (1998) A potent anti-diabetic agent from Kalopanaxpictus. Arch Pharm Res 21:24–29PubMed CrossRef
    Reiter C, Kim J, Quon M (2010) Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: roles for AMP-activated protein kinase, Akt, and FOXO1. Endocrinol 151:103–114CrossRef
    Sá C, Ramos A, Azevedo M, Lima C, Fernándes-Ferreira M, Pereira-Wilson C (2009) Sage tea drinking improves lipid profile and antioxidant defences in humans. Int J Mol Sci 10:3937–3950PubMed PubMedCentral CrossRef
    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Meth Enzymol 299:152–178CrossRef
    Sturm S, Strasser EM, Stuppner H (2006) Quantification of Fumaria officinalis isoquinoline alkaloids by nonaqueous capillary electrophoresis–electrospray ion trap mass spectrometry. J Chromatogr A 1112:331–338PubMed CrossRef
    Tatsis EC, Boeren S, Exarchou V, Troganis AN, Vervoort J, Gerothanassis IP (2007) Identification of the major constituents of Hypericum perforatum by LC/SPE/NMR and/or LC/MS. Phytochemistry 68:383–393PubMed CrossRef
    Tian J, R-y Tao, Z-l Zhang, Liu Q, He Y-b Su, Y-l Ji T-j, Ye F (2015) Effect of Hypericum perforatum L. extract on insulin resistance and lipid metabolic disorder in high-fat-diet induced obese mice. Phytother Res 29:86–92PubMed PubMedCentral CrossRef
    Tucci S, Boyland EJ, Halford JC (2010) The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents. Diabetes Metab Syndr Obes 3:125–143PubMed PubMedCentral CrossRef
    Van Gaal LF, Mertens IL, Christophe E (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880PubMed CrossRef
    Wolfram S, Wang Y, Thielecke F (2006) Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176–187PubMed CrossRef
    You Q, Chen F, Wang X, Jiang Y, Lin S (2012) Anti-diabetic activities of phenolic compounds in muscadine against alpha-glucosidase and pancreatic lipase. LWT-Food Sci Technol 46:164–168CrossRef
    Zimmermann B, Walch S, Tinzoh L, Stühlinger W, Lachenmeier D (2011) Rapid UHPLC determination of polyphenols in aqueous infusions of Salvia officinalis L. (sage tea). J Chromatogr B Analyt Technol Biomed Life Sci 879:2459–2464PubMed CrossRef
  • 作者单位:Diego Hernández-Saavedra (1)
    Iza F. Pérez-Ramírez (1)
    Minerva Ramos-Gómez (1)
    Sandra Mendoza-Díaz (1)
    Guadalupe Loarca-Piña (1)
    Rosalia Reynoso-Camacho (1)

    1. Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autonoma de Queretaro, Queretaro, 76010, Mexico
  • 刊物主题:Pharmacology/Toxicology; Biochemistry, general; Cell Biology;
  • 出版者:Springer US
  • ISSN:1554-8120
文摘
Medicinal herb infusions can be used for the treatment of obesity-related metabolic alterations. The aim of this study was to characterize the phytochemical profile and to evaluate the effect of Hypericum perforatum, Salvia officinalis, and Calendula officinalis on the cardiovascular risk developed in diet-induced obese rats. All infusions decreased body weight and abdominal fat mass and reduced serum triglycerides (TG), total cholesterol, low-density lipoproteins, and C-reactive protein levels. The anti-obesogenic and hypolipidemic effect of C. officinalis and H. perforatum were associated with the inhibition of triglycerides digestion and absorption. Conversely, the hypolipidemic effect of S. officinalis was not associated with this mechanism. Moreover, seven phenolic acids and nine flavonoids were quantified by HPLC–UV/VIS, hesperidin and epigallocatechin gallate were the majoritarian compounds of H. perforatum and C. officinalis, whereas rosmarinic and ellagic acids were the main compounds in S. officinalis. Additionally, we used HPLC–DAD–MSD to identify 45 phytochemicals, such as anthraquinone and phloroglucinol derivatives, phytosterols, saponins, and alkaloids. Total flavonoids, phytosterols, and alkaloids content were highly correlated with TG levels, AUC values from the oil tolerance test, and pancreatic lipase inhibition. These results suggest that these phytochemical-rich infusions may be used as an alternative for obesity-related cardiovascular risk treatment. Keywords Medicinal herbs Obesity Cardiovascular risk Oil tolerance test

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700