用户名: 密码: 验证码:
Aging of blood can be tracked by DNA methylation changes at just three CpG sites
详细信息    查看全文
  • 作者:Carola Ingrid Weidner (17)
    Qiong Lin (10)
    Carmen Maike Koch (17)
    Lewin Eisele (11)
    Fabian Beier (12)
    Patrick Ziegler (12)
    Dirk Olaf Bauerschlag (13)
    Karl-Heinz J?ckel (11)
    Raimund Erbel (14)
    Thomas Walter Mühleisen (15) (16) (17)
    Martin Zenke (10)
    Tim Henrik Brümmendorf (12)
    Wolfgang Wagner (17)
  • 刊名:Genome Biology
  • 出版年:2014
  • 出版时间:February 2014
  • 年:2014
  • 卷:15
  • 期:2
  • 全文大小:1,054 KB
  • 参考文献:1. Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH: DNA damage and ageing: new-age ideas for an age-old problem. / Nat Cell Biol 2008, 10:1241-247. CrossRef
    2. Song Z, Von FG, Liu Y, Kraus JM, Torrice C, Dillon P, Rudolph-Watabe M, Ju Z, Kestler HA, Sanoff H, Lenhard RK: Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. / Aging Cell 2010, 9:607-15. CrossRef
    3. Blasco MA: Telomeres and human disease: ageing, cancer and beyond. / Nat Rev Genet 2005, 6:611-22. CrossRef
    4. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD: Obesity, cigarette smoking, and telomere length in women. / Lancet 2005, 366:662-64. CrossRef
    5. Cortopassi GA, Shibata D, Soong NW, Arnheim N: A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. / Proc Natl Acad Sci U S A 1992, 89:7370-374. CrossRef
    6. Zubakov D, Liu F, van Zelm MC, Vermeulen J, Oostra BA, van Duijn CM, Driessen GJ, van Dongen JJ, Kayser M, Langerak AW: Estimating human age from T-cell DNA rearrangements. / Curr Biol 2010, 20:R970-R971. CrossRef
    7. Helfman PM, Bada JL: Aspartic acid racemisation in dentine as a measure of ageing. / Nature 1976, 262:279-81. CrossRef
    8. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A: Advanced glycation end products and bone loss during aging. / Ann N Y Acad Sci 2005, 1043:710-17. CrossRef
    9. Meissner C, Ritz-Timme S: Molecular pathology and age estimation. / Forensic Sci Int 2010, 203:34-3. CrossRef
    10. Fraga MF, Esteller M: Epigenetics and aging: the targets and the marks. / Trends Genet 2007, 23:413-18. CrossRef
    11. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M: Epigenetic differences arise during the lifetime of monozygotic twins. / Proc Natl Acad Sci U S A 2005, 102:10604-0609. CrossRef
    12. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT: Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. / PLoS Genet 2009, 5:e1000602. CrossRef
    13. Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST: Age-associated DNA methylation in pediatric populations. / Genome Res 2012, 22:623-32. CrossRef
    14. Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W: DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. / Aging Cell 2010, 9:54-3. CrossRef
    15. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD: Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. / Genome Res 2010, 20:434-39. CrossRef
    16. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. / Genome Res 2010, 20:440-46. CrossRef
    17. Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP: Widespread and tissue specific age-related DNA methylation changes in mice. / Genome Res 2010, 20:332-40. CrossRef
    18. Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ: Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. / Cell Stem Cell 2013, 12:413-25. CrossRef
    19. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K: Genome-wide methylation profiles reveal quantitative views of human aging rates. / Mol Cell 2013, 49:359-67. CrossRef
    20. Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E: Epigenetic predictor of age. / PLoS ONE 2011, 6:e14821. CrossRef
    21. Koch CM, Wagner W: Epigenetic-aging-signature to determine age in different tissues. / Aging (Albany NY) 2011, 3:1018-027.
    22. Chen YA, Choufani S, Ferreira JC, Grafodatskaya D, Butcher DT, Weksberg R: Sequence overlap between autosomal and sex-linked probes on the Illumina HumanMethylation27 microarray. / Genomics 2011, 97:214-22. CrossRef
    23. Adkins RM, Thomas F, Tylavsky FA, Krushkal J: Parental ages and levels of DNA methylation in the newborn are correlated. / BMC Med Genet 2011, 12:47. CrossRef
    24. Bibikova M, Le J, Barnes R, Saedinia-Melnyk S, Shou L, Zhen R, Gunderson KL: Genome-wide DNA methylation profiling using Infinium assay. / Epigenomics 2009, 1:177-00. CrossRef
    25. Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS, Adli M, Kasif S, Ptaszek LM, Cowan CA, Lander ES, Koseki H, Bernstein BE: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. / PLoS Genet 2008, 4:e1000242. CrossRef
    26. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA: Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. / Cell Stem Cell 2007, 1:299-12. CrossRef
    27. Teschendorff AE, West J, Beck S: Age-associated epigenetic drift: implications, and a case of epigenetic thrift? / Hum Mol Genet 2013, 22:R7-R15. CrossRef
    28. Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM, Absher D: Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. / Genome Biol 2013, 14:R102. CrossRef
    29. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, Van EK, van den Berg LH, Ophoff RA: Aging effects on DNA methylation modules in human brain and blood tissue. / Genome Biol 2012, 13:R97. CrossRef
    30. Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS: Factors underlying variable DNA methylation in a human community cohort. / Proc Natl Acad Sci U S A 2012, 109:17253-7260. CrossRef
    31. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R: High density DNA methylation array with single CpG site resolution. / Genomics 2011, 98:288-95. CrossRef
    32. Koch CM, Joussen S, Schellenberg A, Lin Q, Zenke M, Wagner W: Monitoring of cellular senescence by DNA-methylation at specific CpG sites. / Aging Cell 2012, 11:366-69. CrossRef
    33. Koch C, Reck K, Shao K, Lin Q, Joussen S, Ziegler P, Walenda G, Drescher W, Opalka B, May T, Brummendorf T, Zenke M, Saric T, Wagner W: Pluripotent stem cells escape from senescence-associated DNA methylation changes. / Genome Res 2013, 23:248-59. CrossRef
    34. Mallon BS, Chenoweth JG, Johnson KR, Hamilton RS, Tesar PJ, Yavatkar AS, Tyson LJ, Park K, Chen KG, Fann YC, McKay RD: StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. / Stem Cell Res 2013, 10:57-6. CrossRef
    35. Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. / Cell Stem Cell 2009, 4:141-54. CrossRef
    36. Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Ait-Hamou N, Leschik J, Pellestor F, Ramirez JM, De VJ, Lehmann S, Lemaitre JM: Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. / Genes Dev 2011, 25:2248-253. CrossRef
    37. Passtoors WM, Boer JM, Goeman JJ, Akker EB, Deelen J, Zwaan BJ, Scarborough A, Breggen R, Vossen RH, Houwing-Duistermaat JJ, Ommen GJ, Westendorp RG, Heemst D, Craen AJ, White AJ, Gunn DA, Beekman M, Slagboom PE: Transcriptional profiling of human familial longevity indicates a role for ASF1A and IL7R. / PLoS ONE 2012, 7:e27759. CrossRef
    38. Online Calculator for the epigenetic aging signature [http://www.molcell.rwth-aachen.de/epigenetic-aging-signature/]
    39. MacKinney AA Jr: Effect of aging on the peripheral blood lymphocyte count. / J Gerontol 1978, 33:213-16. CrossRef
    40. Mahlknecht U, Kaiser S: Age-related changes in peripheral blood counts in humans. / Exp Ther Med 2010, 1:1019-025.
    41. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, Soderhall C, Scheynius A, Kere J: Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. / PLoS ONE 2012, 7:e41361. CrossRef
    42. Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F: Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. / Blood 2011, 117:e182-e189. CrossRef
    43. Schmermund A, M?hlenkamp S, Stang A, Gr?nemeyer D, Seibel R, Hirche H, Mann K, Siffert W, Lauterbach K, Siegrist J, J?ckel KH, Erbel R: Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf Recall Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. / Am Heart J 2002, 144:212-18. CrossRef
    44. Flegal KM, Kit BK, Orpana H, Graubard BI: Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. / JAMA 2013, 309:71-2. CrossRef
    45. Pavanello S, Hoxha M, Dioni L, Bertazzi PA, Snenghi R, Nalesso A, Ferrara SD, Montisci M, Baccarelli A: Shortened telomeres in individuals with abuse in alcohol consumption. / Int J Cancer 2011, 129:983-92. CrossRef
    46. Lee M, Martin H, Firpo MA, Demerath EW: Inverse association between adiposity and telomere length: The Fels Longitudinal Study. / Am J Hum Biol 2011, 23:100-06. CrossRef
    47. Kuningas M, Altmae S, Uitterlinden AG, Hofman A, van Duijn CM, Tiemeier H: The relationship between fertility and lifespan in humans. / Age (Dordr) 2011, 33:615-22. CrossRef
    48. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM: Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. / J Exp Med 1999, 190:157-67. CrossRef
    49. Brummendorf TH, Balabanov S: Telomere length dynamics in normal hematopoiesis and in disease states characterized by increased stem cell turnover. / Leukemia 2006, 20:1706-716. CrossRef
    50. Calado RT, Young NS: Telomere diseases. / N Engl J Med 2009, 361:2353-365. CrossRef
    51. Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C, Greally JM, Barzilai N: Tissue-specific dysregulation of DNA methylation in aging. / Aging Cell 2010, 9:506-18. CrossRef
    52. Liu L, Rando TA: Manifestations and mechanisms of stem cell aging. / J Cell Biol 2011, 193:257-66. CrossRef
    53. Rando TA, Chang HY: Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. / Cell 2012, 148:46-7. CrossRef
    54. Kirkwood TB: Understanding the odd science of aging. / Cell 2005, 120:437-47. CrossRef
    55. Brummendorf TH, Maciejewski JP, Mak J, Young NS, Lansdorp PM: Telomere length in leukocyte subpopulations of patients with aplastic anemia. / Blood 2001, 97:895-00. CrossRef
    56. Erbel R, M?hlenkamp S, M?bus S, Schmermund A, Lehmann N, Stang A, Dragano N, Gr?nemeyer D, Seibel R, K?lsch H, Br?cker-Preuss M, Mann K, Siegrist J, J?ckel KH: Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. / J Am Coll Cardiol 2010, 56:1397-406. CrossRef
    57. Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN: GoMiner: a resource for biological interpretation of genomic and proteomic data. / Genome Biol 2003, 4:R28. CrossRef
    58. Kuhn M: Building predictive models in R using the caret package. / J Statist Software 2008, 28:1-6.
    59. Baerlocher GM, Vulto I, De JG, Lansdorp PM: Flow cytometry and FISH to measure the average length of telomeres (flow FISH). / Nat Protoc 2006, 1:2365-376. CrossRef
    60. Beier F, Balabanov S, Buckley T, Dietz K, Hartmann U, Rojewski M, Kanz L, Schrezenmeier H, Brummendorf TH: Accelerated telomere shortening in glycosylphosphatidylinositol (GPI)-negative compared with GPI-positive granulocytes from patients with paroxysmal nocturnal hemoglobinuria (PNH) detected by proaerolysin flow-FISH. / Blood 2005, 106:531-33. CrossRef
  • 作者单位:Carola Ingrid Weidner (17)
    Qiong Lin (10)
    Carmen Maike Koch (17)
    Lewin Eisele (11)
    Fabian Beier (12)
    Patrick Ziegler (12)
    Dirk Olaf Bauerschlag (13)
    Karl-Heinz J?ckel (11)
    Raimund Erbel (14)
    Thomas Walter Mühleisen (15) (16) (17)
    Martin Zenke (10)
    Tim Henrik Brümmendorf (12)
    Wolfgang Wagner (17)

    17. Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
    10. Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
    11. Institute for Medical Informatics, Biometry and Epidemiology, University Duisburg-Essen, Essen, Germany
    12. Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Aachen University Medical School, Aachen, Germany
    13. Department of Obstetrics and Gynecology, RWTH Aachen University Medical School, Aachen, Germany
    14. Department of Cardiology, West-German Heart Center Essen, University Duisburg-Essen, Essen, Germany
    15. Institute of Human Genetics, University of Bonn, Bonn, Germany
    16. Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
  • ISSN:1465-6906
文摘
Background Human aging is associated with DNA methylation changes at specific sites in the genome. These epigenetic modifications may be used to track donor age for forensic analysis or to estimate biological age. Results We perform a comprehensive analysis of methylation profiles to narrow down 102 age-related CpG sites in blood. We demonstrate that most of these age-associated methylation changes are reversed in induced pluripotent stem cells (iPSCs). Methylation levels at three age-related CpGs - located in the genes ITGA2B, ASPA and PDE4C - were subsequently analyzed by bisulfite pyrosequencing of 151 blood samples. This epigenetic aging signature facilitates age predictions with a mean absolute deviation from chronological age of less than 5 years. This precision is higher than age predictions based on telomere length. Variation of age predictions correlates moderately with clinical and lifestyle parameters supporting the notion that age-associated methylation changes are associated more with biological age than with chronological age. Furthermore, patients with acquired aplastic anemia or dyskeratosis congenita - two diseases associated with progressive bone marrow failure and severe telomere attrition - are predicted to be prematurely aged. Conclusions Our epigenetic aging signature provides a simple biomarker to estimate the state of aging in blood. Age-associated DNA methylation changes are counteracted in iPSCs. On the other hand, over-estimation of chronological age in bone marrow failure syndromes is indicative for exhaustion of the hematopoietic cell pool. Thus, epigenetic changes upon aging seem to reflect biological aging of blood.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700