用户名: 密码: 验证码:
On the Robust Nonlinear Motion Position and Force Control of Flexible Joints Robot Manipulators
详细信息    查看全文
文摘
The design of a robust nonlinear position and force controller for a flexible joints robot manipulator interacting with a rigid environment is presented. The controller is designed using the concept of feedback linearization, sliding mode techniques, and LQE estimation methodologies. It is shown that the nonlinear robot manipulator model is feedback linearizable. A robust performance of the proposed control approach is achieved by accounting for the system parameters uncertainties in the derivation of the nonlinear control law. An upper bound of the error introduced by parametric uncertainties in the system is computed. Then, the feedback linearizing control law is modified by adding a switching action to compensate the errors and to guarantee the achievement of the desired tracking performance. The relationship between the minimum achievable boundary layer thickness and the parametric uncertainties is derived. The proposed controller is tested using an experimental flexible joints robot manipulator, and the results demonstrate its potential benefits in reducing the number of sensors required and the complexity of the design. This is achieved by eliminating the need for nonlinear observers. A robust performance is obtained with minimum control effort by taking into account the effect of system parameter uncertainties and measurement noise.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700