用户名: 密码: 验证码:
Homology modeling, docking, and molecular dynamics simulation of the receptor GALR2 and its interactions with galanin and a positive allosteric modulator
详细信息    查看全文
  • 作者:Wen-Qi Hui ; Qi Cheng ; Tian-Yu Liu ; Qin Ouyang
  • 关键词:Homology modeling ; Docking ; Galanin receptor type 2 ; Molecular dynamic simulation ; Positive allosteric modulator
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:22
  • 期:4
  • 全文大小:1,804 KB
  • 参考文献:1.George SR, O’Dowd BF, Lee SP (2002) G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 1(10):808–820CrossRef
    2.Rask-Andersen M, Almen MS, Schioth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10(8):579–590CrossRef
    3.Overington JP, Al-Lazikani B, Hopkins AL (2006) Opinion: How many drug targets are there? Nat Rev Drug Discov 5(12):993–996
    4.Mitsukawa K, Lu X, Bartfai T (2008) Galanin, galanin receptors and drug targets. Cell Mol Life Sci 65(12):1796–1805CrossRef
    5.Branchek TA, Smith KE, Gerald C, Walker MW (2000) Galanin receptor subtypes. Trends Pharmacol Sci 21(3):109–117CrossRef
    6.Wang S, Hashemi T, Fried S, Clemmons AL, Hawes BE (1998) Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry 37(19):6711–6717CrossRef
    7.Bartfai T, Lu X, Badie-Mahdavi H, Barr AM, Mazarati A, Hua XY, Yaksh T, Haberhauer G, Ceide SC, Trembleau L, Somogyi L, Krock L, Rebek J Jr (2004) Galmic, a nonpeptide galanin receptor agonist, affects behaviors in seizure, pain, and forced-swim tests. Proc Natl Acad Sci USA 101(28):10470–10475
    8.McGowan HW, Schuijers JA, Grills BL, McDonald SJ, McDonald AC (2014) Galnon, a galanin receptor agonist, improves intrinsic cortical bone tissue properties but exacerbates bone loss in an ovariectomised rat model. J Musculoskelet Neuronal Interact 14(2):162–172
    9.Zhao X, Yun K, Seese RR, Wang Z (2013) Galnon facilitates extinction of morphine-conditioned place preference but also potentiates the consolidation process. PLoS One 8(10), e76395CrossRef
    10.Wu WP, Hao JX, Lundstrom L, Wiesenfeld-Hallin Z, Langel U, Bartfai T, Xu XJ (2003) Systemic galnon, a low-molecular weight galanin receptor agonist, reduces heat hyperalgesia in rats with nerve injury. Eur J Pharmacol 482(1–3):133–137CrossRef
    11.Bartfai T, Wang MW (2013) Positive allosteric modulators to peptide GPCRs: a promising class of drugs. Acta Pharmacol Sin 34(7):880–885CrossRef
    12.Conn PJ, Lindsley CW, Meiler J, Niswender CM (2014) Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat Rev Drug Discov 13(9):692–708CrossRef
    13.Nickols HH, Conn PJ (2014) Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis 61:55–71CrossRef
    14.Lu XY, Roberts E, Xia FC, Sanchez-Alavez M, Liu TY, Baldwin R, Wu S, Chang J, Wasterlain CG, Bartfai T (2010) GalR2-positive allosteric modulator exhibits anticonvulsant effects in animal models. Proc Natl Acad Sci USA 107(34):15229–15234
    15.Hoyer D (2010) Neuropeptide receptor positive allosteric modulation in epilepsy: galanin modulation revealed. Proc Natl Acad Sci USA 107(34):14943–14944
    16.Conn PJ, Christopoulos A, Lindsley CW (2009) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8(1):41–54CrossRef
    17.Feng ZW, Hu GX, Ma SF, Xie XQ (2015) Computational advances for the development of allosteric modulators and bitopic ligands in G protein-coupled receptors. AAPS J 17(5):1080–1095
    18.Feng ZW, Ma SF, Hu GX, Xie XQ (2015) Allosteric binding site and activation mechanism of class C G-protein coupled receptors: metabotropic glutamate receptor family. AAPS J 17(3):737–753
    19.Knoflach F, Mutel V, Jolidon S, Kew JN, Malherbe P, Vieira E, Wichmann J, Kemp JA (2001) Positive allosteric modulators of metabotropic glutamate 1 receptor: characterization, mechanism of action, and binding site. Proc Natl Acad Sci USA 98(23):13402–13407
    20.Voigtlander U, Johren K, Mohr M, Raasch A, Trankle C, Buller S, Ellis J, Holtje HD, Mohr K (2003) Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupied receptors. Mol Pharmacol 64(1):21–31CrossRef
    21.Gerlach LO, Skerlj RT, Bridger GJ, Schwartz TW (2001) Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J Biol Chem 276(17):14153–14160
    22.Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR, Pan AC, Arlow DH, Canals M, Lane JR, Rahmani R, Baell JB, Sexton PM, Christopoulos A, Shaw DE (2013) Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503(7475):295–299
    23.Shang Y, LeRouzic V, Schneider S, Bisignano P, Pasternak GW, Filizola M (2014) Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions. Biochemistry 53(31):5140–5149CrossRef
    24.Livingston KE, Traynor JR (2014) Disruption of the Na+ ion binding site as a mechanism for positive allosteric modulation of the mu-opioid receptor. Proc Natl Acad Sci USA 111(51):18369–18374
    25.Rodriguez D, Ranganathan A, Carlsson J (2015) Discovery of GPCR ligands by molecular docking screening: novel opportunities provided by crystal structures. Curr Top Med Chem 15(24):2484–2503CrossRef
    26.Costanzi S, Wang K (2014) The GPCR crystallography boom: providing an invaluable source of structural information and expanding the scope of homology modeling. Adv Exp Med Biol 796:3–13CrossRef
    27.Lundstrom L, Sollenberg UE, Bartfai T, Langel U (2007) Molecular characterization of the ligand binding site of the human galanin receptor type 2, identifying subtype selective interactions. J Neurochem 103(5):1774–1784CrossRef
    28.Wennerberg AB, Cooke RM, Carlquist M, Rigler R, Campbell ID (1990) A 1H NMR study of the solution conformation of the neuropeptide galanin. Biochem Biophys Res Commun 166(3):1102–1109
    29.Morris MB, Ralston GB, Biden TJ, Browne CL, King GF, Iismaa TP (1995) Structural and biochemical studies of human galanin: NMR evidence for nascent helical structures in aqueous solution. Biochemistry 34(14):4538–4545CrossRef
    30.Parthiban M, Shanmughavel P (2007) Three dimensional modeling of N-terminal region of galanin and its interaction with the galanin receptor. Bioinformation 2(3):119–125CrossRef
    31.Jurkowski W, Yazdi S, Elofsson A (2013) Ligand binding properties of human galanin receptors. Mol Membr Biol 30(2):206–216CrossRef
    32.Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745CrossRef
    33.Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326CrossRef
    34.Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265CrossRef
    35.Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC (2014) Molecular control of delta-opioid receptor signalling. Nature 506(7487):191–196CrossRef
    36.Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469(7329):241–244CrossRef
    37.Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344(6179):58–64CrossRef
    38.Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485(7398):327–332CrossRef
    39.Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497(7449):338–343CrossRef
    40.Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G, Roth BL, Cherezov V, Stevens RC (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485(7398):395–399CrossRef
    41.Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474(7352):521–525CrossRef
    42.Zhang J, Zhang K, Gao ZG, Paoletta S, Zhang D, Han GW, Li T, Ma L, Zhang W, Muller CE, Yang H, Jiang H, Cherezov V, Katritch V, Jacobson KA, Stevens RC, Wu B, Zhao Q (2014) Agonist-bound structure of the human P2Y12 receptor. Nature 509(7498):119–122CrossRef
    43.Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshal FH, Mordalski S, Pin JP, Stevens RC, Vriend G, Gloriam DE (2015) Generic GPCR residue numbers—aligning topology maps while minding the gaps. Trends Pharmacol Sci 36(1):22–31
    44.Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325CrossRef
    45.Barany-Wallje E, Andersson A, Graslund A, Maler L (2004) NMR solution structure and position of transportan in neutral phospholipid bicelles. FEBS Lett 567(2–3):265–269CrossRef
    46.Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410CrossRef
    47.Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291CrossRef
    48.Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612
    49.Jain AN (1996) Scoring noncovalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des 10(5):427–440CrossRef
    50.Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng ZP (2014) ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30(12):1771–1773
    51.Pedretti A, Villa L, Vistoli G (2002) VEGA: a versatile program to convert, handle and visualize molecular structure on Windows-based PCs. J Mol Graph Model 21(1):47–49CrossRef
    52.Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res 32(Web Server issue):W665–W667
    53.Hsin J, Arkhipov A, Yin Y, Stone JE, Schulten K (2008) Using VMD: an introductory tutorial. Curr Protoc Bioinformatics 5:5.7
    54.Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRef
    55.Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151(1):283–312CrossRef
    56.Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217CrossRef
    57.MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616CrossRef
    58.Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593CrossRef
    59.Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637CrossRef
    60.Khoddami M, Nadri H, Moradi A, Sakhteman A (2015) Homology modeling, molecular dynamic simulation, and docking based binding site analysis of human dopamine (D4) receptor. J Mol Model 21(2):36
    61.Cai Z, Ouyang Q, Zeng D, Nguyen KN, Modi J, Wang L, White AG, Rogers BE, Xie XQ, Anderson CJ (2014) (64)Cu-labeled somatostatin analogues conjugated with cross
    idged phosphonate-based chelators via strain-promoted click chemistry for pet imaging: in silico through in vivo studies. J Med Chem 57(14):6019–6029CrossRef
    62.Floren A, Land T, Langel U (2000) Galanin receptor subtypes and ligand binding. Neuropeptides 34(6):331–337CrossRef
    63.Bisignano P, Burford NT, Shang Y, Marlow B, Livingston KE, Fenton AM, Rockwell K, Budenholzer L, Traynor JR, Gerritz SW, Alt A, Filizola M (2015) Ligand-based discovery of a new scaffold for allosteric modulation of the mu-opioid receptor. J Chem Inf Model 55(9):1836–1843CrossRef
    64.Burford NT, Livingston KE, Canals M, Ryan MR, Budenholzer LM, Han Y, Shang Y, Herbst JJ, O’Connell J, Banks M, Zhang L, Filizola M, Bassoni DL, Wehrman TS, Christopoulos A, Traynor JR, Gerritz SW, Alt A (2015) Discovery, synthesis, and molecular pharmacology of selective positive allosteric modulators of the delta-opioid receptor. J Med Chem 58(10):4220–4229CrossRef
  • 作者单位:Wen-Qi Hui (1)
    Qi Cheng (1)
    Tian-Yu Liu (1)
    Qin Ouyang (1)

    1. College of Pharmacy, Third Military Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
Galanin receptor type 2 (GALR2) is a class A G-protein-coupled receptor (GPCR), and it has been reported that orthosteric ligands and positive allosteric modulators (PAMs) of GALR2 could potentially be used to treat epilepsy. So far, the X-ray structure of this receptor has not been resolved, and knowledge of the 3D structure of GALR2 may prove informative in attempts to design novel ligands and to explore the mechanism for the allosteric modulation of this receptor. In this study, homology modeling was used to obtain several GALR2 models using known templates. ProSA-web Z-scores and Ramachandran plots as well as pre-screening against a test dataset of known compounds were all utilized to select the best model of GALR2. Molecular dockings of galanin (a peptide) and a nonpeptide ligand were carried out to choose the (GALR2 model)–galanin complex that showed the closest agreement with the corresponding experimental data. Finally, a 50-ns MD simulation was performed to study the interactions between the GALR2 model and the synthetic and endogenous ligands. The results from docking and MD simulation showed that, besides the reported residues, Tyr1604.60, Ile1053.32, Ala2747.35, and Tyr163ECL2 also appear to play important roles in the binding of galanin. The potential allosteric binding pockets in the GALR2 model were then investigated via MD simulation. The results indicated that the mechanism for the allosteric modulation caused by PAMs is the binding of the PAM at pocket III, which is formed by galanin, ECL2, TM2, TM3, and ECL1; this results in the disruption of the Na+-binding site and/or the Na+ ion pathway, leading to GALR2 agonism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700