用户名: 密码: 验证码:
Sensitive detection of biomolecules and DNA bases based on graphene nanosheets
详细信息    查看全文
  • 作者:Delan Gao ; Mingji Li ; Hongji Li ; Cuiping Li
  • 关键词:CVD graphene ; Electrochemical sensing electrode ; Biomolecules ; DNA bases
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:21
  • 期:3
  • 页码:813-821
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Physical Chemistry; Electrochemistry; Energy Storage; Characterization and Evaluation of Materials; Analytical Chemistry; Condensed Matter Physics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1433-0768
  • 卷排序:21
文摘
High surface area electrode materials are of interest for the application of electrochemical sensors. Currently, chemical vapor deposition (CVD) graphene-sensing electrodes are scarce. Herein, for the first time, a graphene based on a Ta wire support was prepared using the CVD method to form a highly electroactive biosensing platform. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) were utilized to characterize the morphology and investigate the electrochemical properties of the CVD graphene electrodes. The resulting CVD graphene electrode exhibited good electrocatalytic activity and had a prominent response effect on dopamine, uric acid, guanine, and adenine. Standing graphene nanosheets have rich catalytic sites such as the edges, the defect levels of the plane, and porous network structures between the graphene nanosheets. These catalytic sites prompt the adsorption and resolution for the four species and the strong electron transport capability of the CVD graphene, which effectively improved the electrical signals for response to four species. Moreover, the graphene electrode is a promising candidate in electrochemical sensing and other electrochemical device applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700