用户名: 密码: 验证码:
Enhanced mechanical and thermal properties of poly(l-lactide) nanocomposites assisted by polydopamine-coated multiwalled carbon nanotubes
详细信息    查看全文
  • 作者:Hongfang Wang (1)
    Cong Wu (1)
    Xu Liu (1)
    Jing Sun (2)
    Guangmei Xia (3)
    Wei Huang (4)
    Rui Song (1)
  • 关键词:Poly(l ; lactic acid) ; Polydopamine ; MWNT nanocomposites ; Mechanical and thermal properties
  • 刊名:Colloid & Polymer Science
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:292
  • 期:11
  • 页码:2949-2957
  • 全文大小:1,499 KB
  • 参考文献:1. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87鈥?33 CrossRef
    2. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63鈥?4 CrossRef
    3. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers-Polylactide: a critique. Eur Polym J 43:4053鈥?074 CrossRef
    4. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841鈥?846 CrossRef
    5. Zhang YQ, Xu HJ, Yang JJ, Chen SY, Ding YS, Wang ZG (2013) Significantly accelerated spherulitic growth rates for semicrystalline polymers through the layer-by-layer film method. Phys Chem C 117:5882鈥?893 CrossRef
    6. Xu H, Teng CQ, Yu MH (2006) Improvements of thermal property and crystallization behavior of PLLA based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer 47:3922鈥?928 CrossRef
    7. Hong ZK, Zhang PB, He CL, Qiu XY, Liu AX, Chen L, Chen XS, Jing XB (2005) Nano-composite of poly(L-lactide) and surface grafted hydroxyapatite: mechanical properties and biocompatibility. Biomaterials 26:6296鈥?304 CrossRef
    8. Zhao YY, Qiu ZB, Yang WT (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J Phys Chem B 112:16461鈥?6468 CrossRef
    9. Yu J, Qiu ZB (2011) Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interfaces 3:890鈥?97 CrossRef
    10. Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(l-lactide)-clay blend. J Polym Sci Part B: Polym Phys 35:389鈥?96 CrossRef
    11. Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z (2009) Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B: Polym Phys 47:326鈥?39 CrossRef
    12. He LH, Sun J, Wang XX, Fan XH, Zhao QL, Cai LF, Song R, Ma Z, Huang W (2012) Unzipped multiwalled carbon nanotubes-incorporated poly(L-lactide) nanocomposites with enhanced interface and hydrolytic degradation. Mater Chem Phys 134:1059鈥?066 CrossRef
    13. Xu YH, Li QF, Sun D, Zhang WJ, Chen GX (2012) A strategy to functionalize the carbon nanotubes and the nanocomposites based on poly(L-lactide). Ind Eng Chem Res 51:13648鈥?3654 CrossRef
    14. Kim HS, Park BH, Yoon JS, Jin HJ (2007) Thermal and electrical properties of poly(L-lactide)-graft-multiwalled carbon nanotube composites. Eur Polym J 43:1729鈥?735 CrossRef
    15. Eitan A, Jiang KY, Dukes D, Andrews R, Schadler LS (2003) Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater 15:3198鈥?201 CrossRef
    16. Clark MD, Subramanian S, Krishnamoorti R (2011) Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J Colloid Interface Sci 354:144鈥?51 CrossRef
    17. Hu H, Yu B, Ye Q, Gu Y, Zhou F (2010) Modification of carbon nanotubes with a nanothin polydopamine layer and polydimethylamino-ethyl methacrylate brushes. Carbon 48:2347鈥?353 CrossRef
    18. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426鈥?30 CrossRef
    19. Lynge ME, van der Westen R, Postma A, Stadler B (2011) Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale 3:4916鈥?928 CrossRef
    20. Wei Y, Kong J, Yang L, Ke L, Tan HR, Liu H, Huang Y, Sun XW, Lu X, Du H (2013) Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles: an improved photoelectrochemical anode. J. Mater Chem A 1:5045鈥?052 CrossRef
    21. Shi C, Deng C, Zhang X, Yang P (2013) Synthesis of highly water-dispersible polydopamine-modified multiwalled carbon nanotubes for matrix-assisted laser desorption/ionization mass spectrometry analysis. ACS Appl Mater Interfaces 5:7770鈥?776 CrossRef
    22. Podsiadlo P, Liu ZQ, Paterson D, Messersmith PB, Kotov NA (2007) Fusion of seashell nacre and marine bioadhesive analogs: high-strength nanocompoisite by layer-by-layer assembly of clay and L-3,4-dihydroxyphenylaianine polymer. Adv Mater 19:949鈥?55 CrossRef
    23. Yang LP, Yee WA, Phua SL, Kong JH, Ding H, Cheah JW, Lu XH (2012) A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites. Rsc Adv 2:2208鈥?210 CrossRef
    24. Yang L, Phua SL, Teo JKH, Toh CL, Lau SK, Ma J, Lu X (2011) A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin. ACS Appl Mater Interfaces 3:3026鈥?032 CrossRef
    25. Zhou M, Li Y, He C, Jin T, Wang K, Fu Q (2014) Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol 91:22鈥?9 CrossRef
    26. Liu XC, Wang GC, Liang RP, Shi L, Qiu JD (2013) Environment-friendly facile synthesis of Pt nanoparticles supported on polydopamine modified carbon materials. J Mater Chem A 1:3945鈥?953 CrossRef
    27. Fei B, Qian B, Yang Z, Wang R, Liu WC, Mak CL, Xin JH (2008) Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 46:1795鈥?797 CrossRef
    28. Peponi L, Navarro-Baena I, Baez JE, Kenny JM, Marcos-Fernandez A (2012) Effect of the molecular weight on the crystallinity of PCL-b-PLLA di-block copolymers. Polymer 53:4561鈥?568 CrossRef
    29. Lizundia E, Sarasua JR, D鈥橝ngelo F, Orlacchio A, Martino S, Kenny JM, Armentano I (2012) Biocompatible poly(L-lactide)/MWCNT nanocomposites: morphological characterization, electrical properties, and stem cell interaction. Macromol Biosci 12:870鈥?81 CrossRef
    30. Milliman HW, Ishida H, Schiraldi DA (2012) Structure property relationships and the role of processing in the reinforcement of nylon 6-POSS blends. Macromolecules 45:4650鈥?657 CrossRef
    31. Papageorgiou GZ, Achilias DS, Nanaki S, Beslikas T, Bikiaris D (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochim Acta 511:129鈥?39 CrossRef
    32. Yang JH, Lin SH, Lee YD (2012) Preparation and characterization of poly(L-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805鈥?0815 CrossRef
    33. Chen PP, Wang Y, Wei T, Meng Z, Jia XD, Xi K (2013) Greatly enhanced mechanical properties and heat distortion resistance of poly(L-lactic acid) upon compositing with functionalized reduced graphene oxide. J Mater Chem A 1:9028鈥?032 CrossRef
  • 作者单位:Hongfang Wang (1)
    Cong Wu (1)
    Xu Liu (1)
    Jing Sun (2)
    Guangmei Xia (3)
    Wei Huang (4)
    Rui Song (1)

    1. College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
    2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
    3. CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
    4. Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
  • ISSN:1435-1536
文摘
Herein, a facile and noncovalent modification for multiwalled carbon nanotubes (MWNTs) is adopted by the self-polymerization of dopamine (DOPA). And, the polydopamine-coated MWNTs (D-MWNTs) were further incorporated into poly(l-lactide) (PLLA) matrix through the solvent-casting method. It is found that the D-MWNTs tend to be well dispersed in PLLA matrix than the pristine MWNTs and the D-MWNTs that can act as heterogeneous nucleators that evidently affect the morphology and crystallization behavior of PLLA. In addition, the significant improvement of dispersion and the interface interaction of PLLA/D-MWNTs, via dopamine coating between the MWNTs and PLLA matrix, results in enhanced mechanical and thermal properties and electrical conductivity. This facile methodology is believed to afford broad application potential in carbon nanotubes (CNTs)-based polymer nanocomposites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700