用户名: 密码: 验证码:
Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): Effect of ionic strength and initial pH
详细信息    查看全文
  • 作者:Do-Gun Kim ; Yu-Hoon Hwang ; Hang-Sik Shin ; Seok-Oh Ko
  • 关键词:adsorption ; heterogeneous catalytic reaction ; ionic strength ; kinetics ; NZVI ; pH
  • 刊名:KSCE Journal of Civil Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:175-187
  • 全文大小:525 KB
  • 参考文献:Aharoni, C. and Tompkins, F. C. (1970). “Kinetics of adsorption and desorption and the elovich equation.” Advanced Catalysis, Vol. 21, pp. 1–49, DOI: 10.​1016/​S0360-0564(08)60563-5 .
    Ahn, H., Jo, H. Y., Kim, G.-Y., and Koh, Y.-K. (2012). “Effect of NaCl on Cr(VI) Reduction by Granular Zero Valent Iron (ZVI) in Aqueous Solutions.” Mater. Trans., Vol. 53, No. 7, pp. 1324–1329, DOI: 10.​2320/​matertrans.​M2011375 .CrossRef
    Alidokht, L., Khataeea, A. R., Reyhanitabar, A., and Oustan, S. (2011). “Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution.” Desalination, Vol. 270, Nos. 1–3, pp. 105–110. DOI: 10.​1016/​j.​desal.​2010.​11.​028 .CrossRef
    Alowitz, M. J. and Scherer, M. M. (2002). “Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal.” Environ. Sci. Technol., Vol. 36, pp. 299–306, DOI: 10.​1021/​es011000h .CrossRef
    Andreas, T., Silke, T., Yuri, K., and Aharon, G. (2009). “Chloroethene dehalogenation with ultrasonically produced air-stable nano iron.” Ultrason. Sonochem., Vol. 16, pp. 617–621, DOI: 10.​1016/​j.​ultsonch.​2009.​01.​005 .CrossRef
    APHA, AWWA and WEF (1998). Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association, Water Environment Federation. Washington, DC, W.A.
    Cáceres-Jensen, L., Rodríguez-Becerra, J., Parra-Rivero, J., Escudey, M., Barrientosa, L., and Castro-Castillo, V. (2013). “Sorption kinetics of diuron on volcanic ash derived soils.” J. Hazard. Mater., Vol. 261, pp. 602–613, DOI: 10.​1016/​j.​jhazmat.​2013.​07.​073 .CrossRef
    Chaplin, B. P., Roundy, E., Guy, K. A., Shapley, J. R., and Werth, C. J. (2006). “Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst.” Envir. Sci. Technol., Vol. 40, pp. 3075–3081. DOI: 10.​1021/​es0525298 .CrossRef
    Cheung, W. H., Szeto, Y. S., and McKay, G. (2007). “Intraparticle diffusion processes during acid dye adsorption onto chitosan.” Bioresource Technol., Vol. 98, pp. 2897–2904, DOI: 10.​1016/​j.​biortech.​2006.​09.​045 .CrossRef
    Choe, S., Chang, Y. Y., Hwang, K. Y., and Khim, J. (2000). “Kinetics of reductive denitrification by nanoscale zero-valent iron.” Chemosphere, Vol. 41, No. 8, pp. 1307–1311, DOI: 10.​1016/​S0045-6535(99)00506-8 .CrossRef
    Gao, W., Jin, R., Chen, J., Guan, X., Zeng, H., Zhang, F., and Guan N. (2004). “Titania-supported bimetallic catalysts for photocatalytic reduction of nitrate.” Catal. Today, Vol. 90, Nos. 3–4, pp. 331–336, DOI: 10.​1016/​j.​cattod.​2004.​04.​043 .CrossRef
    García-Figueruelo, C., Bes-Piá, A., Mendoza-Roca, J. A., Lora-García, J., and Cuartas-Uribe, B. (2009). “Reverse osmosis of the retentate from the nanofiltration of secondary effluents.” Desalination, Vol. 240, pp. 274–279, DOI: 10.​1016/​j.​desal.​2008.​01.​052 .CrossRef
    Gillham, R. W., Vogan, J., Gui, L., Duchene, M., and Son, J. (2010). Iron barrier walls for chlorinated solvent remediation, In: Stroo HF, Ward CH, editors, In Situ Remediation of Chlorinated Solvent Plumes, Springer, New York.
    Hameed, B. H., Tan, I. A. W., and Ahmad, A. L. (2008). “Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon.” Chem. Eng. J., Vol. 144, No. 2, pp. 235–244, DOI: 10.​1016/​j.​cej.​2008.​01.​028 .CrossRef
    Hayes, K. F., Papelis, C., and Leckie, J. O. (1988). “Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces.” J. Colloid Interf. Sci., Vol. 125, No. 2, pp. 717–726, DOI: 10.​1016/​0021-9797(88)90039-2 .CrossRef
    Ho, Y. S. and Ofomaja, A. E. (2006). “Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber.” J. Hazard. Mater., Vol. 129, Nos. 1–3, pp. 137–142, DOI: 10.​1016/​j.​jhazmat.​2005.​08.​020 .CrossRef
    Huan, A., Zhao-hui, J., Lu, H., and Cheng-hua, Q. (2006). “Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate.” T. Nonferr. Metal. Soc., Vol. 16, pp. 345–349, DOI: 10.​1016/​S1003-6326(06)60207-0 .CrossRef
    Huang, C.-P., Wang, H.-W., and Chiu, P.-C. (1998). “Nitrate reduction by metallic iron.” Water Res., Vol. 32, No. 8, pp. 2257–2264, DOI: 10.​1016/​S0043-1354(97)00464-8 .CrossRef
    Huang, Y. H., Zhang, T. C., Shea, P. J., and Comfort, S. D. (2003), “Effects of oxide coating and selected cations on nitrate reduction by iron metal.” J. Environ. Qual., Vol. 32, pp. 1306–1315, DOI: 10.​2134/​jeq2003.​1306 .CrossRef
    Huang, Y. H. and Zhang, T. C. (2004). “Effects of low pH on nitrate reduction by iron powder.” Water Res., Vol. 38, pp. 2631–2642, DOI: 10.​1016/​j.​watres.​2004.​03.​015 .CrossRef
    Hwang, Y., Kim, D., Ahn, Y.-T., Moon, C.-M., and Shin, H.-S. (2012). “Recovery of ammonium salt from nitrate-containing water by iron nanoparticles and membrane contactor.” Environ. Eng. Res., Vol. 17, No. 2, pp. 111–116, DOI: /10.4491/eer.2012.17.2.111.CrossRef
    Hwang, Y. H., Kim, D. G., Ahn, Y. T., Moon, C. M., and Shin, H.S. (2010). “Fate of nitrogen species in nitrate reduction by nanoscale zero valent iron and characterization of the reaction kinetics.” Water Sci. Technol., Vol. 61, No. 3, pp. 705–712, DOI: 10.​2166/​wst.​2010.​895 .CrossRef
    Li, T., Zhang, Y., Geng, B., Wang, D., Wang, S., and Jin, Z. (2008). “Preparation of nanoiron by water-in-oil (W/O) microemulsion for reduction of nitrate in water.” Proc. 2nd Int. Conf. on Bioinformatics and Biomedical Engineering, Shanghai, China, ICBBE 2008, pp. 3339–3342. DOI: 10.​1109/​ICBBE.​2008.​1164 .
    Lin, K.-S., Chang, N.-B., and Chuang, T.-D. (2008a). “Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater.” Sci. Technol. Adv. Mater., Vol. 9, 025015 (9 pp), DOI: 10.​1088/​1468-6996/​9/​2/​025015 .
    Lin, Y.-T., Weng, C.-H., and Chen, F.-Y. (2008b). “Effective removal of AB24 dye by nano/micro-size zero-valent iron.” Sep. Purif. Technol., Vol. 64, pp. 26–30, DOI: 10.​1016/​j.​seppur.​2008.​08.​012 .CrossRef
    Liou, T. H., Lo, S.-L., Lin, C.-J., Hui, W. K., and Weng, S. C. (2005). “Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles.” J. Hazard. Mater., Vol. 127, Nos. 1-3, pp. 102–110, DOI: 10.​1016/​j.​jhazmat.​2005.​06.​029 .CrossRef
    Liu, H. B., Chen, T. H., Chang, D. Y., Chen, D., Liu, Y., He, H. P., and Yuan, R. F. (2012). “Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite.” Mater. Chem. Phys., Vol. 133, No. 1, pp. 205–211, DOI: 10.​1016/​j.​matchemphys.​2012.​01.​008 .CrossRef
    Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., and Lowry, G. V. (2005). “TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties.” Environ. Sci. Technol., Vol. 39, pp. 1338–1345, DOI: 10.​1021/​es049195r .CrossRef
    Luo, J., Song, G., Liu, J., Qiana, G., and Xu, Z. P. (2014). “Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.” J. Colloid Interf. Sci., Vol. 435, No. 1, pp. 21–25, DOI: 10.​1016/​j.​jcis.​2014.​08.​043 .CrossRef
    Ma, F.-Y. (2012). Corrosive effects of chlorides on metals, Pitting Corrosion, Prof. Nasr Bensalah (Ed.), InTech, Rijeka, Croatia.
    Özacar, M. and Şengil, I. A. (2005). “A kinetic study of metal complex dye sorption onto pine sawdust.” Process Biochem., Vol. 40, No. 2, pp. 565–572, DOI: 10.​1016/​j.​procbio.​2004.​01.​032 .CrossRef
    Öztürk, N. and Bekta, T. E. (2004). “Nitrate removal from aqueous solution by adsorption onto various materials.” J. Hazard. Mater., Vol. B112, pp. 155–162, DOI: 10.​1016/​j.​jhazmat.​2004.​05.​001 .CrossRef
    Patoczka, J. and Wilson, D. J. (1984). “Kinetics of the desorption of ammonia from water by diffused aeration.” Separ. Sci. Technol., Vol. 19, No. 1, pp. 77–93, DOI: 10.​1080/​0149639840805993​9 .CrossRef
    Petala, E., Dimos, K., Douvalis, A., Bakas, T., Tucek, J., Zboøil, R., and Karakassides, M. A. (2013). “Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution.” J. Hazard. Mater., Vol. 261, pp. 295–306, DOI: 10.​1016/​j.​jhazmat.​2013.​07.​046 .CrossRef
    Pintar, A., Batista, J., Levee, J., and Kajiuchi, T. (1996). “Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions.” Appl. Catal. B-Enviro., Vol. 11, pp. 81–98, DOI: 10.​1016/​S0926-3373(96)00036-7 .CrossRef
    Quan, X., Wang, F., Zhao, Q., Zhao, T., and Xiang, J. (2009). “Air stripping of ammonia in a water-sparged aerocyclone reactor.” J. Hazard. Mater., Vol. 170, pp. 983–988, DOI: 10.​1016/​j.​jhazmat.​2009.​05.​083 .CrossRef
    Ruangchainikom, C., Liao, C.-H., Anotai, J., and Lee, M.-T. (2006). “Effects of water characteristics on nitrate reduction by the Fe0/CO2 process.” Chemosphere, Vol. 63, No. 2, pp. 335–343, DOI: 10.​1016/​j.​chemosphere.​2005.​06.​049 .CrossRef
    Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., and Lowry, G. V. (2008). “Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns.” Envir. Sci. Technol., Vol. 42, No. 9, pp. 3349–55, DOI: 10.​1021/​es071936b .CrossRef
    Satapanajaru, T., Chompuchan, C., Suntornchot, P., and Pengthamkeerati, P. (2011). “Enhancing decolorization of Reactive Black 5 and Reactive Red 198 during nano zerovalent iron treatment.” Desalination, Vol. 266, pp. 218–230, DOI: 10.​1016/​j.​desal.​2010.​08.​030 .CrossRef
    Spiro, M. (1989). Chemical kinetics, in: R.G. Compton (Ed.), Reactions the Liquid–Solid Interface, Vol. 28, Elsevier, Amsterdam.
    Su, C. and Puls, R. W. (2004). “Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate.” Envir. Sci. Technol., Vol. 38, No. 9, pp. 2715–2720, DOI: 10.​1021/​es034650p .CrossRef
    Wang, C. B. and Zhang, W. X. (1997). “Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs.” Envir. Sci. Technol., Vol. 31, pp. 2154–2156, DOI: 10.​1021/​es970039c .CrossRef
    Wang, Q., Snyder, S., Kim, J., and Choi, H. (2009). “Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization, and reactivity.” Envir. Sci. Technol., Vol. 43, pp. 3292–3299, DOI: 10.​1021/​es803540b .CrossRef
    Wang, W., Jin, Z., Li, T., Zhang, H., and Gao S. (2006). “Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal.” Chemosphere, Vol. 65, pp. 1396–1404, DOI: 10.​1016/​j.​chemosphere.​2006.​03.​075 .CrossRef
    Yang, G. C. C., and Lee, H.-L. (2005). “Chemical reduction of nitrate by nanosized iron: kinetics and pathways.” Water Res., Vol. 39, No. 5, pp. 884–894, DOI: 10.​1016/​j.​watres.​2004.​11.​030 .MathSciNet CrossRef
    Zawaideh, L. L. and Zhang, T. C. (1998). “The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe0-water systems.” Water Sci. Technol., Vol. 38, No. 7, pp. 107–115, DOI: 10.​1016/​S0273-1223(98)00613-1 .CrossRef
    Zhang, R., Li, J., Liu, C., Shen, J., and Sun, X. (2013). “Reduction of nitrobenzene using nanoscale zero-valent iron conned in channels of ordered mesoporous silica.” Colloid. Surface. A, Vol. 425, pp. 108–114, DOI: 10.​1016/​j.​colsurfa.​2013.​02.​040 .CrossRef
    Zhang, X., Lin, Y., and Chen, Z. (2009). “2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron.” J. Hazard. Mater., Vol. 165, Nos. 1–3, pp. 923–927, DOI: 10.​1016/​j.​seppur.​2010.​10.​015 .CrossRef
    Zhou, Y., Lu, P., and Lu, J. (2012). “Application of natural biosorbent and modified peat for bisphenol A removal from aqueous solutions.” Carbohyd. Polym., Vol. 88, No. 2, pp. 502–508, DOI: 10.​1016/​j.​carbpol.​2011.​12.​034 .CrossRef
  • 作者单位:Do-Gun Kim (1)
    Yu-Hoon Hwang (2)
    Hang-Sik Shin (3)
    Seok-Oh Ko (1)

    1. Dept. of Civil Engineering, Kyung Hee University, Yongin, 446-701, Korea
    2. Dept. of Environmental Engineering, Technical University of Denmark, Lyngby, 2800, Denmark
    3. Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-338, Korea
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Industrial Pollution Prevention
    Automotive and Aerospace Engineering and Traffic
    Geotechnical Engineering
  • 出版者:Korean Society of Civil Engineers
  • ISSN:1976-3808
文摘
Kinetic models for pollutants reduction by Nano-scale Zero Valent Iron (NZVI) were tested in this study to gain a better understanding and description of the reaction. Adsorption kinetic models and a heterogeneous catalytic reaction kinetic equation were proposed for nitrate removal and for ammonia generation, respectively. A widely used pseudo-first-order reaction model was a poor fit for nitrate removal in an iron-limiting condition and for ammonia generation in an excess iron condition. However, in this study, pseudo-first-order and pseudo-second-order adsorption kinetic equations were a good fit for nitrate removal; in addition, a Langmuir-Hinshelwood kinetic equation was able to successfully describe ammonia generation, regardless of the NZVI dose, the ionic strength, and the initial pH. These results strongly indicate that nitrate reduction by NZVI is a heterogeneous catalytic reaction, and that that the kinetic models can be used in diverse conditions. The kinetic parameters correlate well with the reaction condition, unless the NZVI dose was greatly increased or unless the NZVI surface was significantly changed at a very high initial pH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700