x Cu x )5(OH)6(CO3)2 (0?≤?em class="EmphasisTypeItalic">x?≤?.5) by density functional theory (DFT). Our calculation results demonstrate that (Zn0.6Cu0.4)5(OH)6(CO3)2 is the most stable structure in thermodynamics. Cu atoms prefer to occupy Zn1?+?Zn2?+?2Zn3 sites in the case of x?=?0.4. The calculated equilibrium lattice constants and average bond lengths agree well with the available experimental results. With increasing the amounts of Cu dopant (0.1?≤?em class="EmphasisTypeItalic">x?≤?.4), the covalent features of Cu-doped Zn5(OH)6(CO3)2 systems are gradually weakened, while the Cu2 site exhibits the strongest Jahn–Teller distortion. Besides, the calculated population analysis illuminates the variation of –OH infrared stretching vibration frequency and the thermal decomposition order of CO3 2?/sup>. The TDOS curve of (Zn0.6Cu0.4)5(OH)6(CO3)2 shifts to the lower energy region than other systems, confirming its thermodynamic stability. Moreover, hydrogen locations are determined by performing structural optimization using DFT. These derived computational findings of (Zn1?em class="EmphasisTypeItalic">x Cu x )5(OH)6(CO3)2 are expected to help improve our fundamental understanding of improving the Cu/ZnO catalysts." />
用户名: 密码: 验证码:
Structural and electronic properties of Cu-doped Zn5(OH)6(CO3)2 from first principles
详细信息    查看全文
  • 作者:Huayan Zheng ; Jiao Li ; Xiaochao Zhang ; Zhong Li…
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:50
  • 期:20
  • 页码:6794-6807
  • 全文大小:2,073 KB
  • 参考文献:1.Atake I, Nishida K, Li D, Shishido T, Oumi Y, Sano T, Takehira K (2007) Catalytic behavior of ternary Cu/ZnO/Al2O3 systems prepared by homogeneous precipitation in water–gas shift reaction. J Mol Catal A 275(1-):130-38View Article
    2.Behrens M (2009) Meso- and nano-structuring of industrial Cu/ZnO/Al2O3 catalysts. J Catal 267(1):24-9View Article
    3.Behrens M, Girgsdies F, Trunschke A, Schl?gl R (2009) Minerals as model compounds for Cu/ZnO catalyst precursors: structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture. Eur J Inorg Chem 10:1347-357View Article
    4.Giester G, Rieck B (2014) Crystal structure refinement of aurichalcite, (Cu, Zn)5(CO3)2(OH)6, from the Lavrion Mining District, Greece. Neues Jb Miner Monat 191(2):225-32
    5.Reddy BJ, Frost RL, Locke A (2008) Synthesis and spectroscopic characterisation of aurichalcite (Zn, Cu2+)5(CO3)2(OH)6; implications for Cu–ZnO catalyst precursors. Transit Met Chem 33(3):331-39View Article
    6.Frost RL, Hales MC, Jagannadha Reddy B (2007) Aurichalcite—an SEM and Raman spectroscopic study. Polyhedron 26(13):3291-300View Article
    7.Couves JW, Thomas JM, Waller D, Jones RH, Dent AJ, Derbyshire GE, Greaves GN (1991) Tracing the conversion of aurichalcite to a copper catalyst by combined X-ray absorption and diffraction. Nature 354(6353):465-68View Article
    8.Ghose S (1964) The crystal structure of hydrozincite, Zn5(OH)6(CO3)2. Acta Crystallogr A 17(8):1051-057View Article
    9.Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schl?gl R (2003) Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. Chem Eur J 9(9):2039-052View Article
    10.Kowalik P, Konkol M, Antoniak K, Próchniak W, Wiercioch P (2014) The effect of the precursor ageing on properties of the Cu/ZnO/Al2O3 catalyst for low temperature water–gas shift (LT-WGS). J Mol Catal A 392:127-33View Article
    11.Behrens M (2014) Coprecipitation: an excellent tool for the synthesis of supported metal catalysts—from the understanding of the well known recipes to new materials. Catal Today 246:46-4View Article
    12.Zander S, Kunkes EL, Schuster ME, Schumann J, Weinberg G, Teschner D, Jacobsen N, Schlogl R, Behrens M (2013) The role of the oxide component in the development of copper composite catalysts for methanol synthesis. Angew Chem Int Ed 52(25):6536-540View Article
    13.Behrens M, Brennecke D, Girgsdies F, Kissner S, Trunschke A, Nasrudin N, Zakaria S, Idris NF, Abd Hamid SB, Kniep B, Fischer R, Busser W, Muhler M, Schlogl R (2011) Understanding the complexity of a catalyst synthesis: co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments. Appl Catal A 392(1-):93-02View Article
    14.Baltes C, Vukojevi? S, Schüth F (2008) Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis. J Catal 258(2):334-44View Article
    15.Harding MM, Kariuki B, Cernik R, Cressey G (1994) The structure of aurichalcite,(Cu, Zn)5(OH)6(CO3)2, determined from a microcrystal. Acta Crystallogr B 50(6):673-76View Article
    16.Charnock J, Schofield P, Henderson C, Cressey G, Cressey B (1996) Cu and Zn ordering in aurichalcite. Mineral Mag 60(403):887-96View Article
    17.Frost RL, Locke AJ, Hales MC, Martens WN (2008) Thermal stability of synthetic aurichalcite implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim 94(1):203-08View Article
    18.Vágv?lgyi V, Locke A, Hales M, Kristóf J, Frost RL, Horváth E, Martens WN (2008) Mechanism for decomposition of aurichalcite—a controlled rate thermal analysis study. Thermochim Acta 468(1-):81-6View Article
    19.Li J, Zheng H, Zhang X, Li Z (2015) First-principles investigation on Cu/ZnO catalyst precursor: energetic, structural and electronic properties of Zn-doped Cu2(OH)2CO3. Comput Mater Sci 96:1-View Article
    20.Lebernegg S, Tsirlin AA, Janson O, Rosner H (2013) Spin gap in malachite Cu2(OH)2CO3 and its evolution under pressure. Phys Rev B 88(22):224406View Article
    21.Segall M, Lindan PJ, Probert M, Pickard C, Hasnip P, Clark S, Payne M (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys: Condens Matter 14(11):2717-744
    22.Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MI, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220(2005):567-70
    23.Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865-868View Article
    24.Hammer B, Hansen LB, N?rskov JK, Hammer B, Hansen LB, N?rskov JK (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B: Condens Matter 59(11):7413-421View Article
    25.Perdew J, Cheva
  • 作者单位:Huayan Zheng (1)
    Jiao Li (1)
    Xiaochao Zhang (2)
    Zhong Li (1)
    Kechang Xie (1)

    1. Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, 030024, Shanxi, China
    2. Institute of Clean Technique for Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
In this work, we investigated the effect of Cu doping on the energetic, structural, and electronic properties of (Zn1?em class="EmphasisTypeItalic">x Cu x )5(OH)6(CO3)2 (0?≤?em class="EmphasisTypeItalic">x?≤?.5) by density functional theory (DFT). Our calculation results demonstrate that (Zn0.6Cu0.4)5(OH)6(CO3)2 is the most stable structure in thermodynamics. Cu atoms prefer to occupy Zn1?+?Zn2?+?2Zn3 sites in the case of x?=?0.4. The calculated equilibrium lattice constants and average bond lengths agree well with the available experimental results. With increasing the amounts of Cu dopant (0.1?≤?em class="EmphasisTypeItalic">x?≤?.4), the covalent features of Cu-doped Zn5(OH)6(CO3)2 systems are gradually weakened, while the Cu2 site exhibits the strongest Jahn–Teller distortion. Besides, the calculated population analysis illuminates the variation of –OH infrared stretching vibration frequency and the thermal decomposition order of CO3 2?/sup>. The TDOS curve of (Zn0.6Cu0.4)5(OH)6(CO3)2 shifts to the lower energy region than other systems, confirming its thermodynamic stability. Moreover, hydrogen locations are determined by performing structural optimization using DFT. These derived computational findings of (Zn1?em class="EmphasisTypeItalic">x Cu x )5(OH)6(CO3)2 are expected to help improve our fundamental understanding of improving the Cu/ZnO catalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700