用户名: 密码: 验证码:
On the amplification of unchirped soliton pulses in a dispersion-decreasing fiber
详细信息    查看全文
  • 作者:Hui Zhong (1)
    Bo Tian (1)
    Yan Jiang (1)
    Hao Sun (1)
    Hui-Ling Zhen (1)
    Wen-Rong Sun (1)

    1. State Key Laboratory of Information Photonics and Optical Communications
    ; and School of Science ; Beijing University of Posts and Telecommunications ; Beijing ; 100876 ; China
  • 关键词:Variable ; coefficient nonlinear Schr枚dinger equation ; Soliton amplification ; Dispersion ; decreasing fibers ; Symbolic computation
  • 刊名:Optical and Quantum Electronics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:47
  • 期:2
  • 页码:139-147
  • 全文大小:780 KB
  • 参考文献:1. Agrawal, G.P.: Effect of two-photon absorption on the amplification of ultrashort optical pulses. Phys. Rev. E ng class="a-plus-plus">48ng>, 2316鈥?318 (1993) CrossRef
    2. Agrawal, G.P.: Optical Fiber Communications III. Academic, New York (1997)
    3. Agrawal, G.P.: Nonlinear Fibre Optics, 3rd edn. Academic, San Diego (2003)
    4. Agrawal, G.P.: Applications of Nonlinear Fiber Optics, 2nd edn. Academic, New York (2008)
    5. Aguergaray, C., Andersen, T.V., Schimpf, D.N., Schmidt, O., Rothhardt, J., Schreiber, T., Limpert, J.: Parametric amplification and compression to ultrashort pulse duration of resonant linear waves. Opt. Exp. ng class="a-plus-plus">15ng>, 5699鈥?710 (2007) CrossRef
    6. Audebert, P., Lecherbourg, L., Bastiani-Ceccotti, S., Geindre, J.P., Blancard, C., Coss茅, P., Faussurier, G., Shepherd, R., Renaudin, P.: Atomic processes in plasmas created by an ultra-short laser pulse. J. Phys. Conf. Ser. ng class="a-plus-plus">112ng>, 042001-1鈥?42001-4 (2008)
    7. Cao, W.H., Wai, P.K.A.: Higher-order soliton compression with pedestal suppression in nonlinear optical loop mirrors constructed from dispersion decreasing fibers. Opt. Commun. ng class="a-plus-plus">221ng>, 181鈥?90 (2003) CrossRef
    8. Desurvire, E.: Erbium-Doped Fiber Amplifiers: Principles and Applications. Wiley, New York (1994)
    9. Dubietis, A., Tamo \(\breve{s}\) auskas, G., Polesana, P., Valiulis, G., Valtna, H., Faccio, D., Di Trapani, P., Piskarskas, A.: Highly efficient four-wave parametric amplification in transparent bulk Kerr medium. Opt. Exp. ng class="a-plus-plus">15ng>, 11126鈥?1132 (2007)
    10. Gagnon, L., B茅langer, P.A.: Adiabatic amplification of optical solitons. Phys. Rev. A ng class="a-plus-plus">43ng>, 6187鈥?193 (1991) CrossRef
    11. Gasch, A., Berning, T., J盲ger, D.: Generation and parametric amplification of solitons in a nonlinear resonator with a Korteweg-de Vries medium. Phys. Rev. A ng class="a-plus-plus">34ng>, 4528鈥?531 (1986) CrossRef
    12. Hilaire, S., Pagnoux, D., Roy, P., F茅vrier, S.: Numerical study of single mode Er-doped microstructured fibers: influence of geometrical parameters on amplifier performances. Opt. Exp. ng class="a-plus-plus">14ng>, 10865鈥?0877 (2006) CrossRef
    13. Hirota, R.: Exact solutions of the Korteweg鈥揹e Vries equation for multiple collisions of solitons. Phys. Rev. Lett. ng class="a-plus-plus">27ng>, 1192鈥?194 (1971) CrossRef
    14. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave. J. Math. Phys. ng class="a-plus-plus">14ng>, 805鈥?09 (1973) CrossRef
    15. Kanna, T., Lakshmanan, M., Tchofo Dinda, P., Akhmediev, N.: Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schr枚dinger equations. Phys. Rev. E ng class="a-plus-plus">73ng>, 026604-1鈥?26604-15 (2006)
    16. Korneev, N., Vysloukh, V.A., Rodriguez, E.M.: Propagation dynamics of weakly localized cnoidal waves in dispersion-managed fiber: from stability to chaos. Opt. Exp. ng class="a-plus-plus">11ng>, 3574鈥?582 (2003) CrossRef
    17. Kubota, Y., Odagaki, T.: Numerical study of soliton scattering in inhomogeneous optical fibers. Phys. Rev. E ng class="a-plus-plus">68ng>, 026603-1鈥?26603-9 (2003)
    18. Larionova, Y., Weiss, C.O., Egorov, O.: Dark solitons in semiconductor resonators. Opt. Exp. ng class="a-plus-plus">13ng>, 8308鈥?317 (2005) CrossRef
    19. Li, B.: Exact soliton solutions to an averaged dispersion-managed fiber system equation. Z. Naturforsch. A ng class="a-plus-plus">59ng>, 919鈥?26 (2004)
    20. Liao, Z.M., Agrawal, G.P.: Role of distributed amplification in designing high-capacity soliton systems. Opt. Exp. ng class="a-plus-plus">9ng>, 66鈥?1 (2001) CrossRef
    21. Lin, G.R., Liao, Y.S., Xia, G.Q.: Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers. Opt. Exp. ng class="a-plus-plus">12ng>, 2017鈥?026 (2004) CrossRef
    22. Lin, Y.T., Lin, G.R.: Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation. Opt. Lett. ng class="a-plus-plus">31ng>, 1382鈥?384 (2006) CrossRef
    23. Lin, G.R., Lin, Y.T., Lee, C.K.: Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier. Opt. Exp. ng class="a-plus-plus">15ng>, 2993鈥?999 (2007) CrossRef
    24. McKinstrie, C.J., Moore, R.O., Radic, S., Jiang, R.: Phase-sensitive amplification of chirped optical pulses in fibers. Opt. Exp. ng class="a-plus-plus">15ng>, 3737鈥?758 (2007) CrossRef
    25. Nakkeeran, K., Kwan, Y.H.C., Wai, P.K.A.: Method to find the stationary solution parameters of chirped fiber grating compensated dispersion-managed fiber systems. Opt. Commun. ng class="a-plus-plus">215ng>, 315鈥?21 (2003) CrossRef
    26. Ngabireng, C.M., Dinda, P.T.: Radiating and nonradiating dispersion-managed solitons. Opt. Lett. ng class="a-plus-plus">30ng>, 595鈥?97 (2005) CrossRef
    27. Ozeki, Y., Takasaka, S., Inoue, T., Igarashi, K., Hiroishi, J., Sugizaki, R., Sakano, M., Namiki, S.: Nearly exact optical beat-to-soliton train conversion based on comb-like profiled fiber emulating a polynomial dispersion decreasing profile. IEEE Photonic. Tech. Lett. ng class="a-plus-plus">17ng>, 1698鈥?700 (2005) CrossRef
    28. Ozeki, Y., Inoue, T.: Stationary rescaled pulse in dispersion-decreasing fiber for pedestal-free pulse compression. Opt. Lett. ng class="a-plus-plus">31ng>, 1606鈥?608 (2006) CrossRef
    29. R枚ser, F., Eidam, T., Rothhardt, J., Schmidt, O., Schimpf, D.N., Limpert, J., T眉nnermann, A.: Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. Opt. Lett. ng class="a-plus-plus">32ng>, 3495鈥?497 (2007) CrossRef
    30. Samek, O., Kurowski, A., Kittel, S., Kukhlevsky, S., Hergenr枚der, R.: Ultra-short laser pulse ablation using shear-force feedback: femtosecond laser induced breakdown spectroscopy feasibility study. Spectrochim. Acta B ng class="a-plus-plus">60ng>, 1225鈥?229 (2005) CrossRef
    31. Senthilnathan, K., Nakkeeran, K., Li, Q., Wai, P.K.A.: Pedestal free pulse compression of chirped optical solitons. Opt. Commun. ng class="a-plus-plus">285ng>, 1449鈥?455 (2012) CrossRef
    32. Shen, Y.J., Gao, Y.T., Yu, X., Meng, G.Q., Qin, Y.: Bell-polynomial approach applied to the seventh-order Sawada-Kotera-Ito equation. Appl. Math. Comput. ng class="a-plus-plus">277ng>, 502鈥?08 (2014)
    33. Sun, Z.Y., Gao, Y.T., Yu, X., Liu,Y.: Amplification of nonautonomous solitons in the Bose-Einstein condensates and nonlinear optics. Europhys. Lett. ng class="a-plus-plus">93ng>, 40004-1鈥?0004-6 (2011)
    34. Sun, Z.Y., Gao, Y.T., Yu, X., Liu,Y.: Dynamics of bound vector solitons induced by stochastic perturbations: soliton breakup and soliton switching. Phys. Lett. ng class="a-plus-plus">A 377ng>, 3283鈥?290 (2013)
    35. Sysliatin, A.A., Nolan, D.A.: Optical signal processing in dispersion varying fiber. J. Nonlinear Opt. Phys. ng class="a-plus-plus">16ng>, 171鈥?84 (2007) CrossRef
    36. Takara, H., Kawanishi, S., Saruwatari, M.: Optical signal eye diagram measurement with subpicosecond resolution using optical sampling. Electron. Lett. ng class="a-plus-plus">32ng>, 1399鈥?400 (1996) CrossRef
    37. Tamura, K.R., Yoshida, E., Nakazawa, M.: Generation of a 10 GHz pulse train at 16 wavelengths by spectrally slicing a high power femtosecond source. Electron. Lett. ng class="a-plus-plus">32ng>, 1691鈥?693 (1996) CrossRef
    38. Wada, N., Sotobayashi, H., Kitayama, K.: 2.5 Gbit/s time-spread/wavelength-hop optical code division multiplexing using fiber Bragg grating with supercontinuum light source. Electron. Lett. ng class="a-plus-plus">36ng>, 816鈥?17 (2000) CrossRef
    39. Wai, P.K.A., Cao, W.H.: Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing fiber. J. Opt. Soc. Am. B ng class="a-plus-plus">20ng>, 1346鈥?355 (2003) CrossRef
    40. Xu, Z.Y., Li, L., Li, Z.H., Zhou, G.S., Nakkeeran, K.: Exact soliton solutions for the core of dispersion-managed solitons. Phys. Rev. E ng class="a-plus-plus">68ng>, 046605-1鈥?46605-8 (2003)
    41. Yaita, M., Nagatsuma, T.: The effect of sampling-pulse pedestals on temporal resolution in electro-optic sampling. IEICE Trans. Electron. ng class="a-plus-plus">E81鈥揅ng>, 254鈥?59 (1998)
    42. Yamamoto, T., Yoshida, E., Tamura, K.R., Yonenaga, K., Nakazawa, M.: 640-Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber consisting of single-mode fiber and 鈥渞everse dispersion fiber鈥? IEEE Photon. Technol. Lett. ng class="a-plus-plus">12ng>, 353鈥?55 (2000) CrossRef
    43. Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dynamics, ng class="a-plus-plus">75ng>, 701鈥?08 (2014)
  • 刊物主题:Optics, Optoelectronics, Plasmonics and Optical Devices; Electrical Engineering; Characterization and Evaluation of Materials; Computer Communication Networks;
  • 出版者:Springer US
  • ISSN:1572-817X
文摘
In this paper, based on a variable-coefficient nonlinear Schr枚dinger (vcNLS) equation, amplification of the fundamental and second-order unchirped solitons in the dispersion-decreasing fiber without any external amplification device, which is different from those in the existing literatures, is studied. Via symbolic computation, soliton solutions of the vcNLS equation are obtained. For a fundamental-soliton pulse, the amplitude is amplified by the gain during the propagation, whereas the width keeps unchanged. Because of the equilibrium between the gain, nonlinearity and varying dispersion, soliton structure is not destroyed, and the amplified fundamental soliton is free from the pedestal and chirp. With the increase of the absolute value of the gain coefficient \(\alpha \) , magnification of the fundamental-soliton amplitude is enhanced in the same propagation distance. For the second-order soliton, the width is compressed and the amplitude is amplified, because the amplification process is accompanied by the compression of the soliton. Period of the second-order soliton decreases exponentially during the propagation, and decreases with the increase of the absolute value of \(\alpha \) in the same propagation distance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700