用户名: 密码: 验证码:
Dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity
详细信息    查看全文
  • 作者:Gengtao Fu ; Huimin Liu ; Nika You ; Jiayan Wu ; Dongmei Sun ; Lin Xu…
  • 关键词:platinum–copper ; nanoassemblies ; arginine molecules ; electrocatalysis ; methanol oxidation
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:755-765
  • 全文大小:2,514 KB
  • 参考文献:[1]You, H. J.; Yang, S. C.; Ding, B. J.; Yang, H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 2013, 42, 2880–2904.CrossRef
    [2]Qiu, H. J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. Aligned nanoporous Pt–Cu bimetallic microwires with high catalytic activity toward methanol electrooxidation. ACS Catal. 2015, 5, 3779–3785.CrossRef
    [3]Jiang, Y. Q.; Jia, Y. Y.; Zhang, J. W.; Zhang, L.; Huang, H.; Xie, Z. X.; Zheng, L. S. Underpotential deposition-induced synthesis of composition-tunable Pt–Cu nanocrystals and their catalytic properties. Chem.—Eur. J. 2013, 19, 3119–3124.CrossRef
    [4]Fu, G. T.; Ma, R. G.; Gao, X. Q.; Chen, Y.; Tang, Y. W.; Lu, T. H.; Lee, J.-M. Hydrothermal synthesis of Pt–Ag alloy nano-octahedra and their enhanced electrocatalytic activity for the methanol oxidation reaction. Nanoscale 2014, 6, 12310–12314.CrossRef
    [5]Qin, Y. C.; Zhang, X.; Dai, X. P.; Sun, H.; Yang, Y.; Shi, Q. X.; Gao, D. W.; Wang, H. Platinum–cobalt nanocrystals synthesized under different atmospheres for high catalytic performance in methanol electro-oxidation. J. Mater. Chem. A 2015, 3, 10671–10676.CrossRef
    [6]Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W. D.; Wang, X. One-pot synthesis of Pt–Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 127, 3868–3872.CrossRef
    [7]Fortunelli, A.; Goddard III, W. A.; Sementa, L.; Barcaro, G.; Negreiros, F. R.; Jaramillo-Botero, A. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts. Chem. Sci. 2015, 6, 3915–3925.CrossRef
    [8]Ji, Y. J.; Wu, Y.; Zhao, G. F.; Wang, D. S.; Liu, L.; He, W.; Li, Y. D. Porous bimetallic Pt–Fe nanocatalysts for highly efficient hydrogenation of acetone. Nano Res. 2015, 8, 2706–2713.CrossRef
    [9]Ghosh, T.; Leonard, B. M.; Zhou, Q.; DiSalvo, F. J. Pt alloy and intermetallic phases with V, Cr, Mn, Ni, and Cu: Synthesis as nanomaterials and possible applications as fuel cell catalysts. Chem. Mater. 2010, 22, 2190–2202.CrossRef
    [10]Chou, S.-W.; Chen, H.-C.; Zhang, Z. Y.; Tseng, W.-H.; Wu, C.-I.; Yang, Y.-Y.; Lin, C.-Y.; Chou, P.-T. Strategic design of three-dimensional (3D) urchin-like Pt–Ni nanoalloys: How this unique nanostructure boosts the bulk heterojunction polymer solar cells efficiency to 8.48%. Chem. Mater. 2014, 26, 7029–7038.CrossRef
    [11]Jiang, B.; Li, C. L.; Imura, M.; Tang, J.; Yamauchi, Y. Multimetallic mesoporous spheres through surfactant-directed synthesis. Adv. Sci. 2015, 2, 1500112.
    [12]Chen, S.; Su, H. Y.; Wang, Y. C.; Wu, W. L.; Zeng, J. Sizecontrolled synthesis of platinum-copper hierarchical trigonal bipyramid nanoframes. Angew. Chem., Int. Ed. 2015, 54, 108–113.CrossRef
    [13]Yang, Y.; Yang, B.; Peng, J. C.; Zhao, Z. J.; Zhao, Y. M. Enhanced hydrogen evolution properties obtained by electrochemical modification of carbon-supported platinum–copper bimetallic nanocatalysts and structural characterization. RSC Adv. 2015, 5, 20981–20986.CrossRef
    [14]Zhao, X. Y.; Luo, B. B.; Long, R.; Wang, C. M.; Xiong, Y. J. Composition-dependent activity of Cu–Pt alloy nanocubes for electrocatalytic CO2 reduction. J. Mater. Chem. A 2015, 3, 4134–4138.CrossRef
    [15]Oezaslan, M.; Hasché, F.; Strasser, P. PtCu3, PtCu and Pt3Cu alloy nanoparticle electrocatalysts for oxygen reduction reaction in alkaline and acidic media. J. Electrochem. Soc. 2012, 159, B444–B454.CrossRef
    [16]Liu, X. W.; Wang, W. Y.; Li, H.; Li, L. S.; Zhou, G. B.; Yu, R.; Wang, D. S.; Li, Y. D. One-pot protocol for bimetallic Pt/Cu hexapod concave nanocrystals with enhanced electrocatalytic activity. Sci. Rep. 2013, 3, 1404.
    [17]Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res. 2015, 8, 2308–2316.CrossRef
    [18]Qi, Y.; Bian, T.; Choi, S. I.; Jiang, Y. Y.; Jin, C. H.; Fu, M. S.; Zhang, H.; Yang, D. R. Kinetically controlled synthesis of Pt–Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation. Chem. Commun. 2014, 50, 560–562.CrossRef
    [19]Sun, J. Z.; Shi, J.; Xu, J. L.; Chen, X. T.; Zhang, Z. H.; Peng, Z. Q. Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum–copper alloy: Experiment and density functional theory calculation. J. Power Sources 2015, 279, 334–344.CrossRef
    [20]Dhavale, V. M.; Kurungot, S. Cu–Pt nanocage with 3-D electrocatalytic surface as an efficient oxygen reduction electrocatalyst for a primary Zn–air battery. ACS Catal. 2015, 5, 1445–1452.CrossRef
    [21]Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634–7640.CrossRef
    [22]Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun. 2015, 51, 9722–9725.CrossRef
    [23]Li, C. L.; Malgras, V.; Aldalbahi, A.; Yamauchi, Y. Dealloying of mesoporous PtCu alloy film for the synthesis of mesoporous Pt films with high electrocatalytic activity. Chem.—Asian J. 2015, 10, 316–320.CrossRef
    [24]Eid, K.; Wang, H. J.; He, P.; Wang, K. M.; Ahamad, T.; Alshehri, S. M.; Yamauchi, Y.; Wang, L. One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale 2015, 7, 16860–16866.CrossRef
    [25]Jia, Y. Y.; Su, J. Y.; Chen, Z. B.; Tan, K.; Chen, Q. L.; Cao, Z. M.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Compositiontunable synthesis of Pt–Cu octahedral alloy nanocrystals from PtCu to PtCu3 via underpotential-deposition-like process and their electro-catalytic properties. RSC Adv. 2015, 5, 18153–18158.CrossRef
    [26]Xiao, M. L.; Li, S. T.; Zhao, X.; Zhu, J. B.; Yin, M.; Liu, C. P.; Xing, W. Enhanced catalytic performance of compositiontunable PtCu nanowire networks for methanol electrooxidation. Chemcatchem 2014, 6, 2825–2831.CrossRef
    [27]Gong, M. X.; Fu, G. T.; Chen, Y.; Tang, Y. W.; Lu, T. H. Autocatalysis and selective oxidative etching induced synthesis of platinum–copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl. Mater. Interfaces 2014, 6, 7301–7308.CrossRef
    [28]Zhang, Z. C.; Yang, Y.; Nosheen, F.; Wang, P. P.; Zhang, J. C.; Zhuang, J.; Wang, X. Fine tuning of the structure of Pt–Cu alloy nanocrystals by glycine–mediated sequential reduction kinetics. Small 2013, 9, 3063–3069.CrossRef
    [29]Nosheen, F.; Zhang, Z. C.; Zhuang, J.; Wang, X. One-pot fabrication of single-crystalline octahedral Pt–Cu nanoframes and their enhanced electrocatalytic activity. Nanoscale 2013, 5, 3660–3663.CrossRef
    [30]Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934–13937.CrossRef
    [31]Jia, Y. Y.; Cao, Z. M.; Chen, Q. L.; Jiang, Y. Q.; Xie, Z. X.; Zheng, L. S. Synthesis of composition-tunable octahedral Pt–Cu alloy nanocrystals by controlling reduction kinetics of metal precursors. Sci. Bull. 2015, 60, 1002–1008.CrossRef
    [32]Yu, X. F.; Wang, D. S.; Peng, Q.; Li, Y. D. High performance electrocatalyst: Pt–Cu hollow nanocrystals. Chem. Commun. 2011, 47, 8094–8096.CrossRef
    [33]Faisal, S.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt–Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.CrossRef
    [34]Taylor, E.; Chen, S. T.; Tao, J.; Wu, L. J.; Zhu, Y. M.; Chen, J. Y. Synthesis of Pt–Cu nanodendrites through controlled reduction kinetics for enhanced methanol electro-oxidation. Chemsuschem 2013, 6, 1863–1867.CrossRef
    [35]Han, L.; Liu, H.; Cui, P. L.; Peng, Z. J.; Zhang, S. J.; Yang, J. Alloy Cu3Pt nanoframes through the structure evolution in Cu–Pt nanoparticles with a core–shell construction. Sci. Rep. 2014, 4, 6414.CrossRef
    [36]Wang, Y. X.; Zhou, H. J.; Sun, P. C.; Chen, T. H. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt–Cu nanocrystals catalysts. J. Power Sources 2014, 245, 663–670.CrossRef
    [37]Yin, A. X.; Min, X. Q.; Zhu, W.; Liu, W. C.; Zhang, Y. W.; Yan, C. H. Pt–Cu and Pt–Pd–Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chem.—Eur. J. 2012, 18, 777–782.CrossRef
    [38]Zhang, J.; Yang, H. Z.; Martens, B.; Luo, Z. P.; Xu, D.; Wang, Y. X.; Zou, S. Z.; Fang, J. Y. Pt–Cu nanoctahedra: Synthesis and comparative study with nanocubes on their electrochemical catalytic performance. Chem. Sci. 2012, 3, 3302–3306.CrossRef
    [39]Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.CrossRef
    [40]Sun, X. H.; Zhu, X.; Zhang, N.; Guo, J.; Guo, S. J.; Huang, X. Q. Controlling and self assembling of monodisperse platinum nanocubes as efficient methanol oxidation electrocatalysts. Chem. Commun. 2015, 51, 3529–3532.
    [41]Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nano. 2010, 5, 15–25.CrossRef
    [42]Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.CrossRef
    [43]Ying, J.; Yang, X.-Y.; Tian, G.; Janiak, C.; Su, B. L. Selfassembly: An option to nanoporous metal nanocrystals. Nanoscale 2014, 6, 13370–13382.CrossRef
    [44]Hong, X.; Tan, C. L.; Liu, J. Q.; Yang, J.; Wu, X.-J.; Fan, Z. X.; Luo, Z. M.; Chen, J. Z.; Zhang, X.; Chen, B. et al. AuAg nanosheets assembled from ultrathin AuAg nanowires. J. Am. Chem. Soc. 2015, 137, 1444–1447.CrossRef
    [45]Wu, Z. N.; Li, Y. C.; Liu, J. L.; Lu, Z. Y.; Zhang, H.; Yang, B. Colloidal self-assembly of catalytic copper nanoclusters into ultrathin ribbons. Angew. Chem., Int. Ed. 2014, 126, 12392–12396.CrossRef
    [46]Ortiz, N.; Skrabalak, S. E. Manipulating local ligand environments for the controlled nucleation of metal nanoparticles and their assembly into nanodendrites. Angew. Chem., Int. Ed. 2012, 51, 11757–11761.CrossRef
    [47]Xiao, F.-X.; Miao, J. W.; Liu, B. Self-assembly of aligned rutile@anatase TiO2 nanorod@CdS quantum dots ternary core–shell heterostructure: Cascade electron transfer by interfacial design. Mater. Horiz. 2014, 1, 259–263.CrossRef
    [48]Stoffelen, C.; Munirathinam, R.; Verboom, W.; Huskens, J. Self-assembly of size-tunable supramolecular nanoparticle clusters in a microfluidic channel. Mater. Horiz. 2014, 1, 595–601.CrossRef
    [49]Xia, B. Y.; Ng, W. T.; Bin Wu, H.; Wang, X.; Lou, X. W. Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells. Angew. Chem., Int. Ed. 2012, 51, 7213–7216.CrossRef
    [50]Gao, M. R.; Zhang, S. R.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Self-assembled platinum nanochain networks driven by induced magnetic dipoles. Adv. Funct. Mater. 2014, 24, 916–924.CrossRef
    [51]Zhang, Z. C.; Hui, J. F.; Liu, Z. C.; Zhang, X.; Zhuang, J.; Wang, X. Glycine-mediated syntheses of Pt concave nanocubes with high-index {hk0} facets and their enhanced electrocatalytic activities. Langmuir 2012, 28, 14845–14848.CrossRef
    [52]Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt–Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2014, 126, 12730–12735.CrossRef
    [53]Fu, G.-T.; Wu, R.; Liu, C.; Lin, J.; Sun, D.-M.; Tang, Y.-W. Arginine-assisted synthesis of palladium nanochain networks and their enhanced electrocatalytic activity for borohydride oxidation. RSC Adv. 2015, 5, 18111–18115.CrossRef
    [54]Fu, G.-T.; Jiang, X.; Wu, R.; Wei, S.-H.; Sun, D.-M.; Tang, Y.-W.; Lu, T.-H.; Chen, Y. Arginine-assisted synthesis and catalytic properties of single-crystalline palladium tetrapods. ACS Appl. Mater. Interfaces 2014, 6, 22790–22795.CrossRef
    [55]Fu, G. T.; Liu, C.; Wu, R.; Chen, Y.; Zhu, X. S.; Sun, D. M.; Tang, Y. W.; Lu, T. H. L-Lysine mediated synthesis of platinum nanocuboids and their electrocatalytic activity towards ammonia oxidation. J. Mater. Chem. A 2014, 2, 17883–17888.CrossRef
    [56]Shimoni, L.; Glusker, J. P. Hydrogen bonding motifs of protein side chains: descriptions of binding of arginine and amide groups. Protein Sci. 1995, 4, 65–74.CrossRef
    [57]Fairlie, D. P.; Jackson, W. G.; Skelton, B. W.; Wen, H.; White, A. H.; Wickramasinghe, W. A.; Woon, T. C.; Taube, H. Models for arginine-metal binding. Synthesis of guanidine and urea ligands through amination and hydration of a cyanamide ligand bound to platinum(II), osmium(III), and cobalt(III). Inorg. Chem. 1997, 36, 1020–1028.CrossRef
    [58]Eid, K.; Wang, H. J.; Malgras, V.; Alothman, Z. A.; Yamauchi, Y.; Wang, L. Trimetallic PtPdRu dendritic nanocages with three-dimensional electrocatalytic surfaces. J. Phys. Chem. C 2015, 119, 19947–19953.CrossRef
    [59]Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt–Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762–16765.CrossRef
    [60]Zhang, P. F.; Dai, X. P.; Zhang, X.; Chen, Z. K.; Yang, Y.; Sun, H.; Wang, X. B.; Wang, H.; Wang, M. L.; Su, H. X. et al. One-pot synthesis of ternary Pt–Ni–Cu nanocrystals with high catalytic performance. Chem. Mater. 2015, 27, 6402–6410.CrossRef
    [61]Kuang, Y.; Cai, Z.; Zhang, Y.; He, D. S.; Yan, X. L.; Bi, Y. M.; Li, Y. P.; Li, Z. Y.; Sun, X. M. Ultrathin dendritic Pt3Cu triangular pyramid caps with enhanced electrocatalytic activity. ACS Appl. Mater. Interfaces 2014, 6, 17748–17752.CrossRef
    [62]Li, Y. J.; Zhang, H. C.; Xu, T. H.; Lu, Z. Y.; Wu, X. C.; Wan, P. B.; Sun, X. M.; Jiang, L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1737–1744.CrossRef
  • 作者单位:Gengtao Fu (2) (3)
    Huimin Liu (1)
    Nika You (2)
    Jiayan Wu (2)
    Dongmei Sun (2)
    Lin Xu (2)
    Yawen Tang (2)
    Yu Chen (1)

    2. Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
    3. Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas, 78712, USA
    1. Key Laboratory of Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an, 710062, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Novel self-assembled architectures have received a growing amount of attention and have significant potential for application in catalysis/electrocatalysis. Herein, we take advantage of the unique coordination and self-assembly properties of arginine for the preparation of dendritic PtCu bimetallic nanoassemblies with tunable chemical composition and structure. Strong interactions between the arginine molecules are key in driving the self-assembly of primary nanocrystals. In addition, the strong coordination interactions between arginine and metal ions is responsible for the formation of Pt–Cu alloys. We also investigated the electrocatalytic activity of various dendritic PtCu bimetallic nanoassemblies towards the methanol oxidation reaction. Pt3Cu1 nanoassemblies exhibited excellent electrocatalytic activity and stability in comparison with other PtCu bimetallic nanoassemblies (Pt1Cu3, Pt1Cu1) and commercial Pt black, due to their unique dendritic structures and the synergistic effect between the Pt and Cu atoms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700