用户名: 密码: 验证码:
Real-time EEG-based emotion monitoring using stable features
详细信息    查看全文
  • 作者:Zirui Lan ; Olga Sourina ; Lipo Wang ; Yisi Liu
  • 关键词:EEG ; Emotion recognition ; Fractal dimension (FD) ; Stability ; Intra ; class correlation coefficient (ICC)
  • 刊名:The Visual Computer
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:32
  • 期:3
  • 页码:347-358
  • 全文大小:1,852 KB
  • 参考文献:1.Allen, J.J., Urry, H.L., Hitt, S.K., Coan, J.A.: The stability of resting frontal electroencephalographic asymmetry in depression. Psychophysiology 41(2), 269–280 (2004)CrossRef
    2.Bouton, M.E.: Learning and Behavior: A Contemporary Synthesis. Sinauer Associates, Sunderland (2007)
    3.Bradley, M.M., Lang, P.J.: The international affective digitized sounds (; iads-2): affective ratings of sounds and instruction manual. Technical report B-3, University of Florida, Gainesville (2007)
    4.Brown, L., Grundlehner, B., Penders, J.: Towards wireless emotional valence detection from EEG. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp. 2188–2191. IEEE (2011)
    5.Chanel, G., Kierkels, J.J., Soleymani, M., Pun, T.: Short-term emotion assessment in a recall paradigm. Int. J. Hum.–Comput. Stud. 67(8), 607–627 (2009)CrossRef
    6.Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
    7.Emotiv. http://​www.​emotiv.​com . Accessed 26 Feb 2015
    8.Frantzidis, C., Bratsas, C., Papadelis, C.L., Konstantinidis, E., Pappas, C., Bamidis, P.D., et al.: Toward emotion aware computing: an integrated approach using multichannel neurophysiological recordings and affective visual stimuli. Inf. Technol. Biomed. IEEE Trans. 14(3), 589–597 (2010)CrossRef
    9.Gasser, T., Bächer, P., Steinberg, H.: Test-retest reliability of spectral parameters of the EEG. Electroencephalogr. Clin. Neurophysiol. 60(4), 312–319 (1985)CrossRef
    10.Gasser, T., Jennen-Steinmetz, C., Verleger, R.: EEG coherence at rest and during a visual task in two groups of children. Electroencephalogr. Clin. Neurophysiol. 67(2), 151–158 (1987)CrossRef
    11.Gudmundsson, S., Runarsson, T.P., Sigurdsson, S., Eiriksdottir, G., Johnsen, K.: Reliability of quantitative EEG features. Clin. Neurophysiol. 118(10), 2162–2171 (2007)CrossRef
    12.Haptek. http://​www.​haptek.​com . Accessed 28 Feb 2015
    13.Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Phys. D: Nonlinear Phenom. 31(2), 277–283 (1988)MathSciNet CrossRef MATH
    14.Hosseini, S.A., Khalilzadeh, M.A., Naghibi-Sistani, M.B., Niazmand, V.: Higher order spectra analysis of EEG signals in emotional stress states. In: 2010 Second International Conference on Information Technology and Computer Science (ITCS), pp. 60–63. IEEE (2010)
    15.Ishino, K., Hagiwara, M.: A feeling estimation system using a simple electroencephalograph. In: IEEE International Conference on Systems, Man and Cybernetics, 2003. vol. 5, pp. 4204–4209. IEEE (2003)
    16.Kedem, B., Yakowitz, S.: Time Series Analysis by Higher Order Crossings. IEEE Press, Piscataway (1994)MATH
    17.Koelstra, S., Mühl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I.: Deap: a database for emotion analysis; using physiological signals. Affect. Comput. IEEE Trans. 3(1), 18–31 (2012)CrossRef
    18.Kondacs, A., Szabó, M.: Long-term intra-individual variability of the background EEG in normals. Clin. Neurophysiol. 110(10), 1708–1716 (1999)CrossRef
    19.Lan, Z., Sourina, O., Wang, L., Liu, Y.: Stability of features in real-time EEG-based emotion recognition algorithm. In: 2014 International Conference on Cyberworlds (CW), pp. 137–144. IEEE (2014)
    20.Lang, P.J., Bradley, M.M., Cuthbert, B.N.: International affective picture system (iaps): affective ratings of pictures and instruction manual. Technical report A-8 (2008)
    21.Li, M., Lu, B.L.: Emotion classification based on gamma-band EEG. In: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pp. 1223–1226. IEEE (2009)
    22.Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H.: EEG-based emotion recognition in music listening. Biomed. Eng. IEEE Trans. 57(7), 1798–1806 (2010)CrossRef
    23.Lin, Y.P., Wang, C.H., Wu, T.L., Jeng, S.K., Chen, J.H.: EEG-based emotion recognition in music listening: a comparison of schemes for multiclass support vector machine. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009, pp. 489–492. IEEE (2009)
    24.Liu, Y., Sourina, O.: EEG databases for emotion recognition. In: 2013 International Conference on Cyberworlds (CW), pp. 302–309. IEEE (2013)
    25.Liu, Y., Sourina, O.: Real-time fractal-based valence level recognition from EEG. In: Transactions on Computational Science XVIII, pp. 101–120. Springer (2013)
    26.Liu, Y., Sourina, O.: Real-time subject-dependent EEG-based emotion recognition algorithm. In: Transactions on Computational Science XXIII, pp. 199–223. Springer (2014)
    27.Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based emotion recognition and its applications. In: Transactions on computational science XII, pp. 256–277. Springer (2011)
    28.McGraw, K.O., Wong, S.P.: Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1(1), 30 (1996)CrossRef
    29.Murugappan, M., Nagarajan, R., Yaacob, S.: Combining spatial filtering and wavelet transform for classifying human emotions using EEG signals. J. Med. Biol. Eng. 31(1), 45–51 (2011)CrossRef
    30.Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. Inf. Technol. Biomed. IEEE Trans. 14(2), 186–197 (2010)CrossRef
    31.Petrantonakis, P.C., Hadjileontiadis, L.J.: A novel emotion elicitation index using frontal brain asymmetry for enhanced EEG-based emotion recognition. Inf. Technol. Biomed. IEEE Trans. 15(5), 737–746 (2011)CrossRef
    32.Petrantonakis, P.C., Hadjileontiadis, L.J.: Adaptive emotional information retrieval from EEG signals in the time-frequency domain. Signal Process. IEEE Trans. 60(5), 2604–2616 (2012)MathSciNet CrossRef
    33.Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. Pattern Anal. Mach. Intell. IEEE Trans. 23(10), 1175–1191 (2001)CrossRef
    34.Salinsky, M., Oken, B., Morehead, L.: Test-retest reliability in EEG frequency analysis. Electroencephalogr. Clin. Neurophysiol. 79(5), 382–392 (1991)CrossRef
    35.Sanei, S., Chambers, J.A.: EEG Signal Processing. Wiley, New York (2013)
    36.Schaaff, K.: EEG-Based Emotion Recognition. Universitat Karlsruhe (TH), Karlsruhe (2008)
    37.Schaaff, K., Schultz, T.: Towards an EEG-based emotion recognizer for humanoid robots. In: The 18th IEEE International Symposium on Robot and Human Interactive Communication, 2009. RO-MAN 2009, pp. 792–796. IEEE (2009)
    38.Sohaib, A.T., Qureshi, S., Hagelbäck, J., Hilborn, O., Jerčić, P.: Evaluating classifiers for emotion recognition using EEG. In: Foundations of Augmented Cognition, pp. 492–501. Springer (2013)
    39.Sourina, O., Liu, Y., Nguyen, M.K.: Real-time EEG-based emotion recognition for music therapy. J. Multimodal User Interf. 5(1–2), 27–35 (2012)CrossRef
    40.Tomarken, A.J., Davidson, R.J., Wheeler, R.E., Kinney, L.: Psychometric properties of resting anterior EEG asymmetry: temporal stability and internal consistency. Psychophysiology 29(5), 576–592 (1992)CrossRef
    41.Wang, X.W., Nie, D., Lu, B.L.: EEG-based emotion recognition using frequency domain features and support vector machines. In: Neural Information Processing, pp. 734–743. Springer (2011)
    42.Williams, C.E., Stevens, K.N.: Emotions and speech: some acoustical correlates. J. Acoust. Soc. Am. 52(4B), 1238–1250 (1972)CrossRef
  • 作者单位:Zirui Lan (1)
    Olga Sourina (1)
    Lipo Wang (2)
    Yisi Liu (1)

    1. Fraunhofer IDM@NTU, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
    2. School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
  • 刊物类别:Computer Science
  • 刊物主题:Computer Graphics
    Computer Science, general
    Artificial Intelligence and Robotics
    Image Processing and Computer Vision
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2315
文摘
In human–computer interaction (HCI), electroencephalogram (EEG) signals can be added as an additional input to computer. An integration of real-time EEG-based human emotion recognition algorithms in human–computer interfaces can make the users experience more complete, more engaging, less emotionally stressful or more stressful depending on the target of the applications. Currently, the most accurate EEG-based emotion recognition algorithms are subject-dependent, and a training session is needed for the user each time right before running the application. In this paper, we propose a novel real-time subject-dependent algorithm with the most stable features that gives a better accuracy than other available algorithms when it is crucial to have only one training session for the user and no re-training is allowed subsequently. The proposed algorithm is tested on an affective EEG database that contains five subjects. For each subject, four emotions (pleasant, happy, frightened and angry) are induced, and the affective EEG is recorded for two sessions per day in eight consecutive days. Testing results show that the novel algorithm can be used in real-time emotion recognition applications without re-training with the adequate accuracy. The proposed algorithm is integrated with real-time applications “Emotional Avatar” and “Twin Girls” to monitor the users emotions in real time.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700