用户名: 密码: 验证码:
Microstructure-modified biodegradable magnesium alloy for promoting cytocompatibility and wound healing in vitro
详细信息    查看全文
  • 作者:Da-Jun Lin ; Fei-Yi Hung ; Ming-Long Yeh…
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:26
  • 期:10
  • 全文大小:3,366 KB
  • 参考文献:1.Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728-4.CrossRef
    2.Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys—a review. Acta Biomater. 2012;8:2442-5.CrossRef
    3.Zhang SX, Zhang XN, Zhao CL, Li JA, Song Y, Xie CY, et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6:626-0.CrossRef
    4.Li ZJ, Gu XN, Lou SQ, Zheng YF. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329-4.CrossRef
    5.Lin DJ, Hung FY, Lui TS, Yeh ML. Heat treatment mechanism and biodegradable characteristics of ZAX1330?Mg alloy. Materials science & engineering C, Materials for biological applications. 2015;51:300-.CrossRef
    6.Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart. 2003;89:651-.CrossRef
    7.Li X, Chu CL, Liu L, Liu XK, Bai J, Guo C, et al. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires. Biomaterials. 2015;49:135-4.CrossRef
    8.Kirkland NT, Birbilis N, Staiger MP. Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations. Acta Biomater. 2012;8:925-6.CrossRef
    9.Zhang WJ, Li MH, Chen Q, Hu WY, Zhang WM, Xin W. Effects of Sr and Sn on microstructure and corrosion resistance of Mg-Zr-Ca magnesium alloy for biomedical applications. Mater Design. 2012;39:379-3.CrossRef
    10.Pu Z, Song GL, Yang S, Outeiro JC, Dillon OW, Puleo DA, et al. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy. Corros Sci. 2012;57:192-01.CrossRef
    11.Aung NN, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corros Sci. 2010;52:589-4.CrossRef
    12.Janning C, Willbold E, Vogt C, Nellesen J, Meyer-Lindenberg A, Windhagen H, et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomater. 2010;6:1861-.CrossRef
    13.Sternberg K, Gratz M, Koeck K, Mostertz J, Begunk R, Loebler M, et al. Magnesium used in bioabsorbable stents controls smooth muscle cell proliferation and stimulates endothelial cells in vitro. J Biomed Mater Res B. 2012;100B:41-0.CrossRef
    14.Nguyen TY, Cipriano AF, Guan RG, Zhao ZY, Liu H. In vitro interactions of blood, platelet, and fibroblast with biodegradable magnesium-zinc-strontium alloys. J Biomed Mater Res A. 2015;103(9):2974-6.CrossRef
    15.Hartwig A. Role of magnesium in genomic stability. Mutat Res-Fund Mol M. 2001;475:113-1.CrossRef
    16.Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175-4.CrossRef
    17.Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother. 2003;57:399-11.CrossRef
    18.ISO 10993-5 I. Biological evaluation of medical devices. Part 5 Tests for Cytotoxicity: In Vitro MethodsANSI/AAMI, Arlington, VA (1999).
    19.Massalski TB. Binary alloy phase diagrams. Ohio: Am Soc Metals; 1986.
    20.Song GL. Recent progress in corrosion and protection of magnesium alloys. Adv Eng Mater. 2005;7:563-6.CrossRef
    21.Kannan MB, Raman RKS. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials. 2008;29:2306-4.CrossRef
    22.Stern M, Geary AL. Electrochemical polarization. 1. A theoretical analysis of the shape of polarization curves. J Electrochem Soc. 1957;104:56-3.CrossRef
    23.Zhao MC, Liu M, Song GL, Atrens A. Influence of microstructure on corrosion of as-cast ZE41. Adv Eng Mater. 2008;10:104-1.CrossRef
    24.Mueller WD, Nascimento ML, de Mele MFL. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater. 2010;6:1749-5.CrossRef
    25.Cheng YL, Qin TW, Wang HM, Zhang Z. Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys. T Nonferr Metal Soc. 2009;19:517-4.CrossRef
    26.Liu CL, Wang YJ, Zeng RC, Zhang XM, Huang WJ, Chu PK. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin. Corros Sci. 2010;52:3341-.CrossRef
    27.Walker GM, Duffus JH. Magnesium-Ions and the Control of the Cell-Cycle in Yeast. J Cell Sci. 1980;42:329-6.
    28.Valerio P, Pereira MM, Goes AM, Leite MF. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 2004;25:2941-.CrossRef
    29.Zhao N, Zhu DH. Endothelial responses of magnesium and other alloying el
  • 作者单位:Da-Jun Lin (1)
    Fei-Yi Hung (1)
    Ming-Long Yeh (2)
    Truan-Sheng Lui (1)

    1. Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan
    2. Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biomaterials
    Characterization and Evaluation Materials
    Polymer Sciences
    Metallic Materials
    Ceramics,Glass,Composites,Natural Materials
    Surfaces and Interfaces and Thin Films
  • 出版者:Springer Netherlands
  • ISSN:1573-4838
文摘
The microstructure of biomedical magnesium alloys has great influence on anti-corrosion performance and biocompatibility. In practical application and for the purpose of microstructure modification, heat treatments were chosen to provide widely varying microstructures. The aim of the present work was to investigate the influence of the microstructural parameters of an Al-free Mg–Zn–Zr alloy (ZK60), and the corresponding heat-treatment-modified microstructures on the resultant corrosion resistance and biological performance. Significant enhancement in corrosion resistance was obtained in Al-free Mg–Zn–Zr alloy (ZK60) through 400 °C solid-solution heat treatment. It was found that the optimal condition of solid-solution treatment homogenized the matrix and eliminated internal defects; after which, the problem of unfavorable corrosion behavior was improved. Further, it was also found that the Mg ion-release concentration from the modified ZK60 significantly induced the cellular activity of fibroblast cells, revealing in high viability value and migration ability. The experimental evidence suggests that this system can further accelerate wound healing. From the perspective of specific biomedical applications, this research result suggests that the heat treatment should be applied in order to improve the biological performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700