用户名: 密码: 验证码:
Probing the Plasmon-Phonon Hybridization in Supported Graphene by Externally Moving Charged Particles
详细信息    查看全文
  • 作者:Tijana Marinkovi? ; Ivan Radovi? ; Du?ko Borka ; Zoran L. Mi?kovi?
  • 关键词:Graphene ; Plasmon ; phonon hybridization ; Wake effect ; Stopping force ; Image force
  • 刊名:Plasmonics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:6
  • 页码:1741-1749
  • 全文大小:1,884 KB
  • 参考文献:1.Das Sarma S, Adam S, Hwang EH, Rossi E (2011) Electronic transport in two-dimensional graphene. Rev Mod Phys 83:407-70CrossRef
    2.Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109-62CrossRef
    3.Nelson FJ, Idrobo JC, Fite JD, Mi?kovi? ZL, Pennycook SJ, Pantelides ST, Lee JU, Diebold AC (2014) Electronic excitations in graphene in the 1-0 eV range: the π and π-??peaks are not plasmons. Nano Lett 14:3827-831CrossRef
    4.Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11:3370-377CrossRef
    5.Jablan M, Buljan H, Solja?i? M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80:245435CrossRef
    6.Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611-22CrossRef
    7.Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291-294CrossRef
    8.Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086-101CrossRef
    9.Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7:330-34CrossRef
    10.Fischetti MV, Neumayer DA, Cartier EA (2001) Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: the role of remote phonon scattering. J Appl Phys 90:4587-608CrossRef
    11.Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photonics 7:394-99CrossRef
    12.Fei Z, Andreev GO, Bao W, Zhang LM, McLeod AS, Wang C, Stewart MK, Zhao Z, Dominguez G, Thiemens M, Fogler MM, Tauber MJ, Castro-Neto AH, Lau CN, Keilmann F, Basov DN (2011) Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett 11:4701-705CrossRef
    13.Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630-34CrossRef
    14.Papasimakis N, Luo Z, Shen ZX, Angelis FD, Fabrizio ED, Nikolaenko AE, Zheludev NI (2010) Graphene in a photonic metamaterial. Opt Express 18:8353-359CrossRef
    15.Niu J, Shin YJ, Son J, Lee Y, Ahn JH, Yang H (2012) Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles. Opt Express 20:19690-9696CrossRef
    16.Niu J, Shin YJ, Lee Y, Ahn JH, Yang H (2012) Graphene induced tunability of the surface plasmon resonance. Appl Phys Lett 100:061116CrossRef
    17.Politano A, Chiarello G (2014) Plasmon modes in graphene: status and prospect. Nanoscale 6:10927-0940CrossRef
    18.Liu Y, Willis RF, Emtsev KV, Seyller T (2008) Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys Rev B 78:201403CrossRef
    19.Liu Y, Willis RF (2010) Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys Rev B 81:081406CrossRef
    20.Allison KF, Mi?kovi? ZL (2010) Friction force on slow charges moving over supported graphene. Nanotechnology 21:134017CrossRef
    21.Hwang EH, Sensarma R, Das Sarma S (2010) Plasmon-phonon coupling in graphene. Phys Rev B 82:195406CrossRef
    22.Koch RJ, Seyller T, Schaefer JA (2010) Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem. Phys Rev B 82:201413CrossRef
    23.Borisov AG, Mertens A, Winter H, Kazansky AK (1999) Evidence for the stopping of slow ions by excitations of optical phonons in insulators. Phys Rev Lett 83:5378-381CrossRef
    24.Villette J, Borisov AG, Khemliche H, Momeni A, Roncin P (2000) Subsurface-channeling-like energy loss structure of the skipping motion on an ionic crystal. Phys Rev Lett 85:3137-140CrossRef
    25.Lucas AA, Sunjic M, Benedek G (2013) Multiple excitation of Fuchs-Kliewer phonons by Ne+ ions back-scattered by the LiF(100) surface at grazing incidence. J Phys Condens Matter 25:355009CrossRef
    26.Lucas AA, Sunjic M, Benedek G, Echenique PM (2014) Quantum ricochets: surface capture, release and energy loss of fast ions hitting a polar surface at grazing incidence. New J Phys 16:063015CrossRef
    27.de Abajo FJG, Echenique PM (1992) Wake potential in the vicinity of a surface. Phys Rev B 46:2663-675CrossRef
    28.Burgd?rfer J (1992) Dynamic screening and wake effects on electronic excitation in ion-solid and ion-surface collisions. Nucl Inst Methods B 67:1-0CrossRef
    29.Winter H, Poizat JC, Remillieux J (1992) Coulomb explosion of fast H2 + molecular ions in grazing collisions with a Si(111) surface. Nucl Inst Methods B 67:345-49CrossRef
    30.Song YH, Wang YN, Mi?kovi? ZL (2005) Vicinage effects in energy loss and electron emission during grazing scattering of heavy molecular ions from a solid surface. Phys Rev A 72:01290
  • 作者单位:Tijana Marinkovi? (1)
    Ivan Radovi? (1)
    Du?ko Borka (1)
    Zoran L. Mi?kovi? (2) (3)

    1. Vin?a Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001, Belgrade, Serbia
    2. Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
    3. Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
We use the dielectric response formalism to show how an incident charged particle may be used to probe the hybridization taking place between the Dirac plasmon in graphene and the surface optical phonon modes in a SiO2 substrate. Strong effects of this hybridization are found in the wake pattern in the induced potential, as well as in the stopping and image forces that act on the incident charge in a broad range of its velocities. Particularly intriguing is the possibility to control the plasmon-phonon hybridization by varying the doping density of graphene, where the regime of a nominally neutral graphene is expected to give rise to dramatic effects in the energy loss of charged particles that move at the velocities below the Fermi velocity of graphene. Keywords Graphene Plasmon-phonon hybridization Wake effect Stopping force Image force

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700