用户名: 密码: 验证码:
Analyzing Photothermal Heat Generation Efficiency in a Molecular Plasmonic Silver Nanomatryushka Dimer
详细信息    查看全文
  • 作者:Arash Ahmadivand ; Nezih Pala
  • 关键词:Plasmonics ; Nanomatryushka dimer ; Photothermal heat ; Plasmon hybridization ; Numerical modeling
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 页码:493-501
  • 全文大小:4,632 KB
  • 参考文献:1.Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2009) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383CrossRef
    2.Wu DJ, Cheng Y, Wu XW, Liu XJ (2014) An active metallic nanomatryushka with two similar super-resonances. J Appl Phys 116:013502CrossRef
    3.Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructure. Science 302:419–422CrossRef
    4.Kulkarni V, Prodan E, Nordlander P (2013) Quantum plasmonics: optical properties of a nanomatryushka. Nano Lett 13:5873–5879CrossRef
    5.Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem Phys 6:1221–1231
    6.Taleb A, Russier V, Courty A, Pileni MP (1999) Collective optical properties of silver nanoparticles organized in two-dimensional superlattices. Phys Rev B 59:13350CrossRef
    7.Liu S, Tang Z (2010) Nanoparticle assemblies for biological and chemical sensing. J Mater Chem 20:24–35CrossRef
    8.Wang P, Huang B, Dai Y, Whangbo MH (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825CrossRef
    9.Bakr OM, Amendola VA, Aikens CM, Wenseleers W, Li R, Dan Negro L, Schatz GC, Stellacci F (2009) Silver nanoparticles with broad multiband linear optical absorption. Angew Chem Int Ed 121:6035–6040CrossRef
    10.Cao YWC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540CrossRef
    11.Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138CrossRef
    12.Ahmadivand A, Golmohammadi S (2014) Electromagnetic plasmon propagation and coupling through the gold nanoring heptamers: a route to design optimized telecommunication photonic nanostructures. Appl Opt 53:3832–3840CrossRef
    13.Brown LV, Sobhani H, Lassiter JB, Nordlander P, Halas NJ (2010) Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4:819–832CrossRef
    14.Verellen N, Van Dorpe P, Huang C, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397CrossRef
    15.El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135CrossRef
    16.Huang X, Qian W, El-Sayed IH, El-Sayed MA (2007) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39:747–753CrossRef
    17.Lapotko D, Lukianova E, Potapnev M, Aleinikova O, Oraevsky A (2006) Methods, of laser activated nano-thermolysis for elimination of tumor cells. Cancer Lett 239:36–45CrossRef
    18.Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228CrossRef
    19.Munidasa M, Mandelis A (1991) Photopyrelectric thermal-wave tomography of aluminum with ray-optic reconstruction. J Opt Soc Am A 8:1851–1858CrossRef
    20.Vermeulen P, Cognet L, Lounis B (2014) Photothermal microscopy: optical detection of small absorbers in scattering environments. J Microsc 254:115–121CrossRef
    21.Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ (2012) Solar vapor generation enabled by nanoparticles. ACS Nano 7:42–49CrossRef
    22.Fang Z, Zhen Y–R, Neumann O, Polman A, Javier Garcia de Abajo F, Nordlander P (2013) Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett 13:1736–1742CrossRef
    23.Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7:1929–1934CrossRef
    24.Toroghi S, Kik P (2014) Photothermal response enhancement in heterogenous plasmon-resonant nanoparticle trimers. Phys Rev B 90:205414CrossRef
    25.Muller EA, Strader ML, John JE, Yang A, Caplins BW, Shearer AJ, Suich DE, Harris CB (2013) Femtosecond electron solvation at the ionic liquid/metal electrode interface. J Am Chem Soc 29:10646–10653CrossRef
    26.Pusch A, Shadrivov IV, Hess O, Kivshar YS (2013) Self-focusing of femtosecond surface plasmon polaritons. Opt Express 21:1121–1127CrossRef
    27.Lin H, Yi Z (2012) Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design. Opt Lett 37:1304–1306CrossRef
    28.Palik ED (1991) Handbook of optical constants of solids, 2nd edn. Academic Press, San Diego
    29.Jackson JB, Halas NJ (2001) Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 105:2743–2746CrossRef
    30.Muinonen K, Zubko E, Tyynelä J, Shkuratov YG, Videen G (2007) Light scattering by Gaussian random particles with discrete-dipole approximation. J Quant Spectrosc Radiat Transf 106:360–377CrossRef
    31.Baffou G, Quidant R, Girard C (2009) Heat generation in plasmonic nanostructures: Influence of morphology. Appl Phys Lett 94:153109CrossRef
    32.Uyar R, Erdogdu F, Marra F (2014) Effect of load volume on power absorption and temperature evolution during radio-frequency of meat cubes: a computational struct. Food Bioprod Process 92:243–251CrossRef
    33.Baptiste J, Fourier JB (1822) Théorie analytique de la chaleur, Chez Frimin Didot, Pére et fils,
    34.Chen G (1996) Nonlocal and noneqilibrium heat conduction in the vicinity of nanoparticles. J Heat Trans T ASME 118:539–545CrossRef
    35.Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2:30–38CrossRef
    36.Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Lasers Photon Rev 7:171–187CrossRef
    37.Kim W, Wang R, Majumdar A (2007) Nanostructuring expands thermal limits. Nano Today 2:40–47CrossRef
    38.Lide DR (2004) Handbook of chemistry and physics, 84th ed., CRC Press, US
    39.Kittel C (1949) Interpretation of the thermal conductivity of glasses. Phys Rev 75:972CrossRef
    40.Ramires MLV, Nieto de Castro CA, Nagasaka Y, Nagashima A, Assael MJ, Wakeham WA (1995) Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data 24:1377CrossRef
    41.Maier SA (2007) Plasmonics: fundamentals and applications. Springer, NY
    42.Murata I, Tanaka H (2010) Surface-wetting effects on the liquid-liquid transition of a single-component molecular liquid. Nat Commun 1:1–9CrossRef
    43.Meads PF, Forsythe WR, Giauque WF (1941) The heat capacities and entropies of silver and lead from 15° to 300°K. J Am Chem Soc 63:1902–1905CrossRef
    44.Toroghi S, Lumdee C, Kik PG (2015) Heterogenous plasmonic trimers for enhanced nonlinear optical absorption. Appl Phys Lett 106:103012CrossRef
    45.Herzog JB, Knight MW, Natelson D (2014) Thermoplasmonics: quantifying plasmonic heating in single nanowires. Nano Lett 14:499–503CrossRef
    46.Ahmadivand A, Karabiyik M, Pala N (2015) Intensifying magnetic dark modes in the antisymmetric plasmonic quadrumer composed of Al/Al2O3 nanodisks with the placement of silicon nanospheres. Opt Commun 338:218–225CrossRef
    47.Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Close encounters between two nanoshells. Nano Lett 8:1212–1218CrossRef
    48.Ahmadivand A, Golmohammadi S (2014) Optimized plasmonic configurations: adjacent and merging regimes between a symmetric couple of Au rod/shell nano-arrangements for LSPR sensing and spectroscopic purposes. J Nanoparticle Res 16:2491CrossRef
    49.Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715CrossRef
    50.Golmohammadi S, Ahmadivand A (2014) Fano resonances in compositional clusters of aluminum nanodisks at the UV spectrum: a route to design efficient and precise biochemical sensors. Plasmonics 9:1447–1465CrossRef
    51.Nazir A, Panaro S, Zaccaria RP, Liberale C, De Angelis F, Toma A (2014) Fano coil-type resonance for magnetic hot-spot generation. Nano Lett 14:3166–3171CrossRef
    52.Ahmadivand A, Pala S (2015) Localization, hybridization, and coupling of plasmon resonances in an aluminum nanomatryushka, Plasmonics Online first article doi: 10.1007/s11468-014-9868-z
  • 作者单位:Arash Ahmadivand (1)
    Nezih Pala (1)

    1. Department of Electrical and Computer Engineering, Florida International University, 10555 W Flagler St., Miami, FL, 33174, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
We report on the numerically and analytically investigated plasmonic and photothermal responses of a nanomatryushka structure composed of silver concentric nanoshells which exhibited strong plasmon resonance localization in the optical frequencies. Illuminating an isolated silver nanomatryushka in an aqueous system, we calculated the photothermal response of the structure and quantified the absorbed optical power and generated photothermal heat. In addition, it is shown that a couple of nanomatryushka structures as a symmetric molecular dimer in weak and strong coupling regimes are able to support strong plasmon resonances in the visible to the near-infrared region. Utilizing strong near-field coupling in the metallic nanostructures and hybridization of plasmons, and also employing silver as a highly absorptive material at the visible spectrum, we increased the energy dissipation per unit volume almost three orders of magnitude in comparison to the other analogous subwavelength structures. Employing numerical methods, we showed that a symmetric metallic nanomatryushka dimer is able to generate enough photothermal heat which could result in a remarkable amount of temperature change (ΔT = 140 K) at the picosecond time scale. According to hybridization theory, the symmetric dimer is able to support strong bonding and antibonding plasmon resonant modes. Utilizing concentric nanoshells with high geometrical tunability facilitates using all of the surfaces and center of nanoparticles to generate heat with a large temperature change within a short relaxation time. This understanding opens new avenues to utilize simple nanoparticle orientations to generate significant heat power in an extremely short time scale for cancer therapy, photothermal therapy, and biological applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700