用户名: 密码: 验证码:
Soil-water dynamics and tree water uptake in the Sacramento Mountains of New Mexico (USA): a stable isotope study
详细信息    查看全文
  • 作者:Casey Gierke ; B. Talon Newton ; Fred M. Phillips
  • 刊名:Hydrogeology Journal
  • 出版年:2016
  • 出版时间:June 2016
  • 年:2016
  • 卷:24
  • 期:4
  • 页码:805-818
  • 全文大小:7,833 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Geology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-0157
  • 卷排序:24
文摘
In the southwestern United States, precipitation in the high mountains is a primary source of groundwater recharge. Precipitation patterns, soil properties and vegetation largely control the rate and timing of groundwater recharge. The interactions between climate, soil and mountain vegetation thus have important implications for the groundwater supply. This study took place in the Sacramento Mountains, which is the recharge area for multiple regional aquifers in southern New Mexico. The stable isotopes of oxygen and hydrogen were used to determine whether infiltration of precipitation is homogeneously distributed in the soil or whether it is partitioned among soil-water ‘compartments’, from which trees extract water for transpiration as a function of the season. The results indicate that “immobile” or “slow” soil water, which is derived primarily from snowmelt, infiltrates soils in a relatively uniform fashion, filling small pores in the shallow soils. “Mobile” or “fast” soil water, which is mostly associated with summer thunderstorms, infiltrates very quickly through macropores and along preferential flow paths, evading evaporative loss. It was found that throughout the entire year, trees principally use immobile water derived from snowmelt mixed to differing degrees with seasonally available mobile-water sources. The replenishment of these different water pools in soils appears to depend on initial soil-water content, the manner in which the water was introduced to the soil (snowmelt versus intense thunderstorms), and the seasonal variability of the precipitation and evapotranspiration. These results have important implications for the effect of climate change on recharge mechanisms in the Sacramento Mountains.KeywordsUSAKarstStable isotopesGroundwater recharge/water budgetSoil water

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700