用户名: 密码: 验证码:
Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry
详细信息    查看全文
  • 作者:Jingjing Zhang ; Elena N. Kitova ; Jun Li…
  • 关键词:Protein–carbohydrate complexes ; Hydrogen/deuterium exchange mass spectrometry ; Hydrogen bonds
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:27
  • 期:1
  • 页码:83-90
  • 全文大小:1,202 KB
  • 参考文献:1.Vuignier, K., Schappler, J., Veuthey, J.L., Carrupt, P.A., Martel, S.: Drug–protein binding: a critical review of analytical tools. Anal. Bioanal. Chem. 398, 53–66 (2010)CrossRef
    2.Lee, Y.C., Lee, R.T.: Cabohydrate–protein interactions: basis of glycobiology. Acc. Chem. Res. 28, 321–327 (1995)CrossRef
    3.Holgersson, J., Gustafsson, A., Breimer, M.E.: Characteristics of protein–carbohydrate interactions as a basis for developing novel carbohydrate-based antirejection therapies. Immunol. Cell. Biol. 83, 694–708 (2005)CrossRef
    4.Kamiya, Y., Yagi-Utsumi, M., Yagi, H., Kato, K.: Structural and molecular basis of carbohydrate-protein interaction systems as potential therapeutic targets. Curr. Pharm. Design. 17, 1672–1684 (2011)CrossRef
    5.Duan, X.Q., Hall, J.A., Nikaido, H., Quiocho, F.A.: Crystal structures of the maltodextrin/maltose-binding protein complexed with reduced oligosaccharides: flexibility of tertiary structure and ligand binding. J. Mol. Biol. 306, 1115–1126 (2001)CrossRef
    6.Duan, X.Q., Quiocho, F.A.: Structural evidence for a dominant role of nonpolar interactions in the binding of a transport/chemosensory receptor to its highly polar ligands. Biochemistry 41, 706–712 (2002)CrossRef
    7.Fernandez-Alonso, M.D., Diaz, D., Berbis, M.A., Marcelo, F., Canada, J., Jimenez-Barbero, J.: Protein–carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr. Protein Pept. Sci. 13, 816–830 (2012)CrossRef
    8.Kohn, J.E., Afonine, P.V., Ruscio, J.Z., Adams, P.D., Head-Gordon, T.: Evidence of functional protein dynamics from X-ray crystallographic ensembles. PLoS Comput. Biol. 6, e1000911 (2010)CrossRef
    9.Percy, A.J., Rey, M., Burns, K.M., Schriemer, D.C.: Probing protein interactions with hydrogen/deuterium exchange and mass spectrometry—a review. Anal. Chim. Acta. 721, 7–21 (2012)CrossRef
    10.Chalmers, M.J., Busby, S.A., Pascal, B.D., West, G.M., Griffin, P.R.: Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Exp. Rev. Proteom. 8, 43–59 (2011)CrossRef
    11.Iacob, R.E., Engen, J.R.: Hydrogen exchange mass spectrometry: are we out of the quicksand? J. Am. Soc. Mass Spectrom. 23, 1003–1010 (2012)CrossRef
    12.Garcia, R.A., Pantazatos, D., Villarreal, F.J.: Hydrogen/deuterium exchange mass spectrometry for investigating protein-ligand interactions. Assay Drug Dev. Technol. 2, 81–91 (2004)CrossRef
    13.Houde, D., Berkowitz, S.A., Engen, J.R.: The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J. Pharm. Sci. 100, 2071–2086 (2011)CrossRef
    14.Wildes, D., Marqusee, S.: Hydrogen exchange and ligand binding: ligand-dependent and ligand-independent protection in the Src SH3 domain. Protein Sci. 14, 81–88 (2005)CrossRef
    15.Zhang, J., Chalmers, M.J., Stayrook, K.R., Burris, L.L., Garcia-Ordonez, R.D., Pascal, B.D., Burris, T.P., Dodge, J.A., Griffin, P.R.: Hydrogen/deuterium exchange reveals distinct agonist/partial agonist receptor dynamics within vitamin D receptor/retinoid X receptor heterodimer. Structure 18, 1332–1341 (2010)CrossRef
    16.Huang, R.Y.C., Wen, J., Blankenship, R.E., Gross, M.L.: Hydrogen–deuterium exchange mass spectrometry reveals the interaction of Fenna-Matthews-Olson protein and chlorosome CsmA protein. Biochemistry 51, 187–193 (2012)CrossRef
    17.Chetty, P.S., Mayne, L., Kan, Z.Y., Lund-Katz, S., Englander, S.W., Phillips, M.C.: Apolipoprotein A-I helical structure and stability in discoidal high-density lipoprotein (HDL) particles by hydrogen exchange and mass spectrometry. Proc. Natl. Acad. Sci. U. S. A. 109, 11687–11692 (2012)CrossRef
    18.Ahn, J., Engen, J.R.: The use of hydrogen/deuterium exchange mass spectrometry in epitope mapping. Chim. Oggi. Chem. Today 31, 25–28 (2013)
    19.Jorgensen, T.J.D., Gardsvoll, H., Dano, K., Roepstorff, P., Ploug, M.: Dynamics of urokinase receptor interaction with peptide antagonists studied by amide hydrogen exchange and mass spectrometry. Biochemistry 43, 15044–15057 (2004)CrossRef
    20.Dai, S.Y., Burris, T.P., Dodge, J.A., Montrose-Rafizadeh, C., Wang, Y., Pascal, B.D., Chalmers, M.J., Griffin, P.R.: Unique ligand binding patterns between estrogen receptor alpha and beta revealed by hydrogen-deuterium exchange. Biochemistry 48, 9668–9676 (2009)CrossRef
    21.Hamuro, Y., Coales, S.J., Morrow, J.A., Molnar, K.S., Tuske, S.J., Southern, M.R., Griffin, P.R.: Hydrogen/deuterium-exchange (H/D-Ex) of PPAR gamma LBD in the presence of various modulators. Protein Sci. 15, 1883–1892 (2006)CrossRef
    22.Wei, H., Ahn, J., Yu, Y.Q., Tymiak, A., Engen, J.R., Chen, G.D.: Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation. J. Am. Soc. Mass Spectrom. 23, 498–504 (2012)CrossRef
    23.Pan, Y., Brown, L., Konermann, L.: Hydrogen exchange mass spectrometry of bacteriorhodopsin reveals light-induced changes in the structural dynamics of a biomolecular machine. J. Am. Chem. Soc. 133, 20237–20244 (2011)CrossRef
    24.Pan, Y., Piyadasa, H., O'Neil, J.D., Konermann, L.: Conformational dynamics of a membrane transport protein probed by H/D exchange and covalent labeling: the glycerol facilitator. J. Mol. Biol. 416, 400–413 (2012)CrossRef
    25.King, D., Bergmann, C., Orlando, R., Benen, J.A.E., Kester, H.C.M., Visser, J.: Use of amide exchange mass spectrometry to study conformational changes within the endopolygalacturonase II-homogalacturonan-polygalacturonase inhibiting protein system. Biochemistry 41, 10225–10233 (2002)CrossRef
    26.King, D., Lumpkin, M., Bergmann, C., Orlando, R.: Studying protein–carbohydrate interactions by amide hydrogen/deuterium exchange mass spectrometry. Rapid Commun. Mass Spectrom. 16, 1569–1574 (2002)CrossRef
    27.Seyfried, N.T., Atwood, J.A., Yongye, A., Almond, A., Day, A.J., Orlando, R., Woods, R.J.: Fourier transform mass spectrometry to monitor hyaluronan–protein interactions: use of hydrogen/deuterium amide exchange. Rapid Commun. Mass Spectrom. 21, 121–131 (2007)CrossRef
    28.Huzil, J.T., Chik, J.K., Slysz, G.W., Freedman, H., Tuszynski, J., Taylor, R.E., Sackett, D.L., Schriemer, D.C.: A unique mode of microtubule stabilization induced by peloruside A. J. Mol. Biol. 378, 1016–1030 (2008)CrossRef
    29.Henkels, C.H., Oas, T.G.: Ligation-state hydrogen exchange: coupled binding and folding equilibria in ribonuclease P protein. J. Am. Chem. Soc. 128, 7772–7781 (2006)CrossRef
    30.Sowole, M.A., Konermann, L.: Effects of protein−ligand interactions on hydrogen/deuterium exchange kinetics: canonical and noncanonical scenarios. Anal. Chem. 86, 6715–6722 (2014)CrossRef
    31.Lee, C.T., Graf, C., Mayer, F.J., Richter, S.M., Mayer, M.P.: Dynamics of the regulation of Hsp90 by the cochaperone Sti1. EMBO J. 31, 1518–1528 (2012)CrossRef
    32.Bennett, M.J., Barakat, K., Huzil, J.T., Tuszynski, J., Schriemer, D.C.: Discovery and characterization of the laulimalide-microtubule binding mode by mass shift perturbation mapping. Chem. Biol. 17, 725–734 (2010)CrossRef
    33.Lin, H., Kitova, E.N., Klassen, J.S.: Measuring positive cooperativity using the direct ESI-MS assay. Cholera toxin B subunit homopentamer binding to GM1 pentasaccharide. J. Am. Soc. Mass Spectrom. 25, 104–110 (2014)CrossRef
    34.Merritt, E.A., Merritt, E.A., Sarfaty, S., Jobling, M.G., Chang, T., Holmes, R.K., Hirst, T.R., Hol, W.G.J.: Structural studies of receptor binding by cholera toxin mutants. Protein Sci. 6, 1516–1528 (1997)CrossRef
    35.Ling, H., Ling, H., Boodhoo, A., Hazes, B., Cummings, M.D., Armstrong, G.D., Brunton, J.L., Read, R.J.: Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37, 1777–1788 (1998)CrossRef
    36.Johannes, L., Romer, W.: Shiga toxins—from cell biology to biomedical applications. Nat. Rev. Microbiol. 8, 105–116 (2010)
    37.Stein, P.E., Boodhoo, A., Tyrrell, G.J., Brunton, J.L., Read, R.J.: Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature 355, 748–750 (1992)CrossRef
    38.Greco, A., Ho, J.G.S., Lin, S.J., Palcic, M.M., Rupnik, M., Ng, K.K.S.: Carbohydrate recognition by Clostridium difficile toxin A. Nat. Struct. Mol. Biol. 13, 460–461 (2006)CrossRef
    39.Dingle, T., Wee, S., Mulvey, G.L., Greco, A., Kitova, E.N., Sun, J.X., Lin, S.J., Klassen, J.S., Palcic, M.M., Ng, K.K.S., Armstrong, G.D.: Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology 18, 698–706 (2008)CrossRef
    40.Glasoe, P.K., Long, F.A.: Use of glass electrods to measure acidities in deuterium oxide. J. Phys. Chem. 64, 188–189 (1960)CrossRef
    41.Wales, T.E., Eggertson, M.J., Engen, J.R.: Considerations in the analysis of hydrogen exchange mass spectrometry data. Methods Mol. Biol. 1007, 263–288 (2013)CrossRef
    42.Zhang, Z.Q., Smith, D.L.: Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein-structure elucidation. Protein Sci. 2, 522–531 (1993)CrossRef
    43.Keppel, T.R., Howard, B.A., Weis, D.D.: Mapping unstructured regions and synergistic folding in intrinsically disordered proteins with amide H/D exchange mass spectrometry. Biochemistry 50, 8722–8732 (2011)CrossRef
    44.Sheff, J.G., Rey, M., Schriemer, D.C.: Peptide-column interactions and their influence on back exchange rates in hydrogen/deuterium exchange-MS. J. Am. Soc. Mass Spectrom. 24, 1006–1015 (2013)CrossRef
    45.Majumdar, R., Manikwar, P., Hickey, J.M., Samra, H.S., Sathish, H.A., Bishop, S.M., Middaugh, C.R., Volkin, D.B., Weis, D.D.: Effects of salts from the Hofmeister series on the conformational stability, aggregation propensity, and local flexibility of an IgG1 monoclonal antibody. Biochemistry 52, 3376–3389 (2013)CrossRef
    46.Liu, S., Liu, L., Uzuner, U., Zhou, X., Gu, M., Shi, W., Zhang, Y., Dai, S.Y., Yuan, J.S.: HDX-Analyzer: a novel package for statistical analysis of protein structure dynamics. BMC Bioinform. 12(Suppl 1), S43 (2011)CrossRef
    47.Li, Z., Huang, R.Y., Yopp, D.C., Hileman, T.H., Santangelo, T.J., Hurwitz, J., Hudgens, J.W., Kelman, Z.: A novel mechanism for regulating the activity of proliferating cell nuclear antigen by a small protein. Nucleic Acids Res. 42, 5776–5789 (2014)CrossRef
    48.Merritt, E.A., Sarfaty, S., Vandenakker, F., Lhoir, C., Martial, J.A., Hol, W.G.J.: Crystal-structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3, 166–175 (1994)CrossRef
    49.Merritt, E.A., Kuhn, P., Sarfaty, S., Erbe, J.L., Holmes, R.K., Ho, W.G.J.: The 1.25 angstrom resolution refinement of the cholera toxin B-pentamer: evidence of peptide backbone strain at the receptor-binding site. J. Mol. Biol. 282, 1043–1059 (1998)CrossRef
    50.Skinner, J.J., Lim, W.K., Bedard, S., Black, B.E., Englander, S.W.: Protein dynamics viewed by hydrogen exchange. Protein Sci. 21, 996–1005 (2012)CrossRef
    51.Shimizu, H., Field, R.A., Homans, S.W., Donohue-Rolfe, A.: Solution structure of the complex between the B-subunit homopentamer of verotoxin VT-1 from Escherichia coli and the trisaccharide moiety of globotriaosylceramide. Biochemistry 37, 11078–11082 (1998)CrossRef
    52.Benjamin, D.C., Williams Jr., D.C., Smith-Gill, S.J., Rule, G.S.: Long-range changes in a protein antigen due to antigen-antibody interaction. Biochemistry 31, 9539–9545 (1992)CrossRef
    53.Sowole, M.A., Alexopoulos, J.A., Cheng, Y.Q., Ortega, J., Konermann, L.: Activation of ClpP protease by ADEP antibiotics: insights from hydrogen exchange mass spectrometry. J. Mol. Biol. 425, 4508–4519 (2013)CrossRef
    54.Resetca, D., Haftchenary, S., Gunning, P.T., Wilson, D.J.: Changes in signal transducer and activator of transcription 3 (STAT3) dynamics induced by complexation with pharmacological inhibitors of Src homology 2 (SH2) domain dimerization. J. Biol. Chem. 289, 32538–32547 (2014)CrossRef
  • 作者单位:Jingjing Zhang (1) (3)
    Elena N. Kitova (1) (3)
    Jun Li (1) (3)
    Luiz Eugenio (2) (3)
    Kenneth Ng (2) (3)
    John S. Klassen (1) (3)

    1. Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
    3. Alberta Glycomics Centre, Edmonton, Alberta, Canada
    2. Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700