用户名: 密码: 验证码:
Photoluminescence on cerium-doped ZnO nanorods produced under sequential atomic layer depositionhydrothermal processes
详细信息    查看全文
  • 作者:J. L. Cervantes-López ; R. Rangel ; J. Espino ; E. Martínez…
  • 刊名:Applied Physics A
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:123
  • 期:1
  • 全文大小:
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Condensed Matter Physics; Optical and Electronic Materials; Nanotechnology; Characterization and Evaluation of Materials; Surfaces and Interfaces, Thin Films; Operating Procedures, Materials Treatment
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-0630
  • 卷排序:123
文摘
Doped and undoped ZnO nanorod arrays were produced combining atomic layer deposition and hydrothermal processes. First, a ZnO layer with preferential orientation normal to the c-axis was grown on the substrate by means of the decomposition of diethylzinc; subsequently, the nanorod arrays were produced through solvothermal process using a solution of Zn(NO3)2 as precursor. Doped ZnO nanorods were produced using Ce(C2H3O2)3·H2O as dopant agent precursor. Undoped and Ce-doped ZnO nanorod arrays showed high-intensity photoluminescence. The doping concentration of x = 0.04 (Zn1−xCexO) displayed the highest photoluminescence. Undoped ZnO showed an intense UV peak centered at 382 nm with a narrow full wide half maximum of 33 nm. Ce-doped ZnO PL spectra contain three bands, one signal in the UV region centered at 382 nm, other centered at 467 nm in the near-green region and other one emission centered at 560 nm. The results herein exposed demonstrate the capability to produce high-quality ZnO and Zn1−xCexO films.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700