用户名: 密码: 验证码:
Mid-Paleocene event at Gabal Nezzazat, Sinai, Egypt: planktonic foraminiferal biostratigraphy, mineralogy and geochemistry
详细信息    查看全文
  • 作者:Mamdouh F. Soliman ; Nageh A. Obaidalla ; Ezzat A. Ahmed…
  • 关键词:Mid ; Paleocene event ; Qreiya Beds ; Hyperthermal ; Sulphides ; Chalcophiles ; Planktonic foraminifera ; Productivity ; Redox conditions
  • 刊名:Arabian Journal of Geosciences
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:7
  • 期:10
  • 页码:4079-4099
  • 全文大小:2,236 KB
  • 参考文献:1. Laia A, Silvia O (2007) Global extinction event in benthic foraminifera across the Paleocene/Eocene boundary at the Dababiya Stratotype section. Micropaleontology 52:433-47
    2. Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289-18 CrossRef
    3. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197-14 CrossRef
    4. Arnaboldi M, Meyers PA (2007) Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea. Palaeogeogr Palaeoclimatol Palaeoecol 249:425-43. doi:10.1016/j.palaeo.2007.02.016 CrossRef
    5. Aubry M-P, Rodriguez O, Bord D, Godfrey L, Schmitz B, Knox RWO’B (2012) The first radiation of the Fasciculiths: morphologic adaptations of the coccolithophores to oligotrophy. Aust J Earth Sci 105:29-8
    6. Baturin GN (1983) Some unique sedimentological and geochemical features of deposits in coastal upwelling regions. In: Thiede J, Suess E (eds) Coastal upwelling, its sedimentary records. Part B: Sedimentary records of ancient coastal upwelling: NATO Conference Series. IV, vol 10B. Plenum Press, Marine Sciences, New York, pp 11-7
    7. Berggren WA, Miller KG (1988) Paleogene tropical planktonic foraminiferal biostratigraphy and magnetobiochronology. Micropaleontology 34:362-80 CrossRef
    8. Berggren WA, Norris RD (1997) Taxonomy and biostratigraphy of (sub) tropical Paleocene Planktonic Foraminifera. Micropaleontology 34:1-16
    9. Berggren WA, Pearson PN (2005) A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. J Foram Res 35:279-98 CrossRef
    10. Berggren WA, Kent DV, Swisher CC III, Aubry M-P (1995) A revised Cenozoic geochronology and chronostratigraphy. Soc Econ Paleontol Mineral Spec Publ 54:129-13
    11. Bernhard JM (1986) Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene. J Foram Res 16:207-15 CrossRef
    12. Blow WH (1979) The Cainozoic Globigerinida, 3 Volumes 1413 pp, Leiden (Brill).
    13. Bohor BF, Foord EE, Ganapathy R (1986) Magnesioferrite from the Cretaceous–Tertiary boundary, Caravaca, Spain. Earth Planet Sci Lett 81:57-6 CrossRef
    14. Bolli HM (1957) The genera Globigerina and Globorotalia in the Paleocene-Lower Eocene Lizard Springs formation of Trinidad. B W I U S Nat Mus Bull 215:51-1
    15. Bolli HM (1966) Zonation of Cretaceous to Paleocene marine sediments based on planktonic foraminifera. Bol Inform Asoc 9:3-2
    16. Bornemann A, Schulte P, Sprong J, Steurbaut E, Youssef MA, Speijer RP (2009) Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt). J Geol Soc Lond 166:1135-142. doi:10.1144/0016-76492008-104 CrossRef
    17. Brumsack H-J (1989) Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geol Rundsch 78:851-82 CrossRef
    18. Buzas MA (1990) Another look at confidence limits for species proportions. J Paleontol 64:842-43
    19. Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic sediments: implications for the geological record. Mar Geol 113:67-8 CrossRef
    20. Cook PJ (1972) Petrology and geochemistry of the phosphate deposits of northwest Queen land, Australia. Econ Geol 67:1193-213 CrossRef
    21. Cramer BS, Kent DV (2005) Bolide summer: the Paleocene/Eocene thermal maximum as a response to an extraterrestrial trigger. Palaeogeogr Palaeoclimatol Palaeoecol 224:144-66. doi:10.1016/j.palaeo.2005.03.040 CrossRef
    22. Davis C, Pratt LM, Sliter WV, Mompart L, Murat B (1999) Factors influencing organic carbon and trace metal accumulation in the Upper Cretaceous La Luna Formation of the western Maracaibo basin, Venezuela. In: Barerra E, Johnson C (eds) Evolution of the Cretaceous ocean–climate system, vol 332, GSA. Spec. pap., pp 203-30
    23. Desborough GA, Hatch JR, Leventhal JS (1991) Geochemical and mineralogical comparison of the Upper Pennsylvanian Stark Shale Member of the Dennis Limestone, east-central Kansas, with the Middle Pennsylvanian Mecca Quarry Shale Member of the Carbondale Formation in Illinois and of the Linton Formation in Indiana: US Geological Survey. Circular 1058:12-0
    24. Dickens GR, O’Neil JR, Kea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965-71 CrossRef
    25. Dupuis C, Aubry M-P, Steurbaut E, Berggren WA, Ouda K, Magioncalda R, Cramer BS, Kent DV, Speijer RP, Heilmann-Clausen C (2003) The Dababiya Quarry section: lithostratigraphy, clay mineralogy, geochemistry, and paleontology. Micropaleontology 49:41-9 CrossRef
    26. Dymond J, Suess E, Lyle M (1992) Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography 7:163-81 CrossRef
    27. Edwards AB, Baker G (1951) Some occurrences of supergene iron sulphides in relation to their environment of deposition. J Sediment Petrol 21:34-6
    28. El Goresy A, Chao ECT (1976) Evidence of the impacting body of the Ries Crater—the discovery of Fe-Cr-Ni veinlets below the Crater bottom. Earth Planet Sci Lett 31:330-40 CrossRef
    29. El-Kammar AM, Darwish M, Philip G, El-Kammar MM (1990) Composition and origin of black shales from Quseir area, Red Sea, Egypt. J Univ Kuwait (Sci) 17:177-89
    30. El-Naggar ZR (1966) Stratigraphy and planktonic foraminifera of the Upper Cretaceous–Lower Tertiary succession in the Esna-Idfu region, Nile Valley, Egypt. Bull. British Museum (Natural History). Geology 2:1-91
    31. Ernst SR, Guasti E, Dupuis C, Speijer RP (2006) Environmental perturbation in the southern Tethys across the Paleocene/Eocene boundary (Dababiya, Egypt): foraminiferal and clay mineral records. Mar Micropaleontol 60:89-11 CrossRef
    32. Guasti E, Kouwenhoven TJ, Brinkhuis H, Speijer R (2005) Paleocene sea-level and productivity changes at the southern Tethyan margin (El Kef, Tunisia). Mar Micropaleontol 55:1-7 CrossRef
    33. Guasti E, Speijer RP, Brinkhuis H, Smit J, Steurbaut E (2006) Paleoenvironmental change at the Danian-Selandian transition in Tunisia: Foraminifera, organic-walled dinoflagellate cyst and calcareous nannofossil records. Mar Micropaleontol 59:210-29 CrossRef
    34. Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee Country, Kansas. USA Chem Geol 99:65-2 CrossRef
    35. Hendriks F, luger P, Strouhal A (1990) Early tertiary marine palygorskite and sepiolite neoformation in SE Egypt. Z Dtsch Geol Ges 141:87-7
    36. Hetzel A, B?ttcher ME, Wortmann UG, Brumsack H-J (2009) Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeogr Palaeoclimatol Palaeoecol 273:302-28 CrossRef
    37. Horn W, El Goresy A (1981) Discovery of metallic residues of the Rochechouart meteorite basement rocks. B Mineral 104:587-93
    38. Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111-29 CrossRef
    39. Keller G, Abramovich S, Berner Z, Adatte T (2009) Biotic effects of the Chicxulub impact, K-T catastrophe and sea level change in Texas. Palaeogeogr Palaeoclimatol Palaeoecol 271:52-8. doi:10.1016/j.palaeo.2008.09.007 CrossRef
    40. Kennett JP, Stott LD (1991) Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 353:225-29 CrossRef
    41. Kent DV, Cramer BS, Lanci L, Wang D, Wright JD, Van der Voo R (2003) A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion. Earth Planet Sci Lett 211:13-6 CrossRef
    42. Li YH, Schoonmaker JE (2003) Chemical composition and mineralogy of marine sediments. In: Holland HD, Turekian KK (Eds) Treatise on Geochemistry, Elsevier Ltd., Hoboken, pp 3469-503
    43. Lyons TW, Werne JP, Hollander DJ, Murray RW (2003) Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem Geol 195:131-57 CrossRef
    44. Marquillas R, Sabino I, Sial AN, del Papa C, Ferreira V, Matthews S (2007) Carbon and oxygen isotopes of Maastrichtian-Danian shallow marine carbonates: Yacoraite Formation, northwestern Argentina. J S Am Earth Sci 23:304-20 CrossRef
    45. Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143-60 CrossRef
    46. M?rz C, Poulton SW, Beckmann B, Küster K, Wagner T, Kasten S (2008) Redox sensitivity of P cycling during marine black shale formation: dynamics of sulphidic and anoxic, non-sulphidic bottom waters. Geochim Cosmochim Acta 72:3703-717 CrossRef
    47. Meyer FM, Robb LJ (1996) The geochemistry of black shales from the Chuniespoort Group, Transvaal Sequence, Eastern Transvaal, South Africa. Econ Geol 91:111-21 CrossRef
    48. Moore DM, Reynolds RC Jr (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York, p 378
    49. Obaidalla NA, El-Dawy MH, Kassab AS (2009) Biostratigraphy and paleoenvironment of the Danian/Selandian (D/S) transition in the Southern Tethys: a case study from north Eastern Desert, Egypt. J Afr Earth Sci 53:1-5 CrossRef
    50. Ogorelec B, Dolenec T, Drobne K (2007) Cretaceous–Tertiary boundary problem on shallow carbonate platform: carbon and oxygen excursions, biota and microfacies at the K/T boundary sections Dolenja Vas and Sopada in SW Slovenia, Adria CP. Palaeogeogr Palaeoclimatol Palaeoecol 255:64-6 CrossRef
    51. Olsson RK, Hemleben C, Berggen WA, Huber BT (1999) Atlas of Paleocene planktonic foraminifera. Smithson Contrib Paleobiol 85:1-52 CrossRef
    52. Paytan A, Griffith EM (2007) Marine barite: recorder of variations in ocean export productivity. Deep-Sea Res II 54:687-05 CrossRef
    53. Pirrung M, Illner P, Matthiessen J (2008) Biogenic barium in surface sediments of the European Nordic Seas. Mar Geol 250:89-03 CrossRef
    54. Pujol F, Berner Z, Stüben D (2006) Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections: chemostratigraphic constraints. Palaeogeogr Palaeoclimatol Palaeoecol 240:120-45. doi:10.1016/j.palaeo.2006.03.055 CrossRef
    55. Pye K, Krinsley DH (1986) Diagenetic carbonate and evaporate minerals in Rotlieglend aeolian sandstones of the southern North Sea: their nature and relationship to secondary porosity. Clay Miner 21:443-57 CrossRef
    56. Racki G, Racka M, Matyja H, Devleeschouwer X (2002) The Frasnian/Famennian boundary interval in the South Polish–Moravian shelf basins; integrated event-stratigraphical approach. Palaeogeogr Palaeoclimatol Palaeoecol 181:251-97 CrossRef
    57. Rimmer SM (2004) Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem Geol 206:373-91 CrossRef
    58. Riquier L, Tribovillard N, Averbuch O, Devleeschouwer X, Riboulleau A (2006) The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): two oxygen-deficient periods resulting from different mechanisms. Chem Geol 233:137-55 CrossRef
    59. Schmitz B, Charisi SD, Thompson EI, Speijer RP (1997) Barium, SiO2 (excess), and P2O5 as proxies of biological productivity in the Middle East during the Palaeocene and the latest Palaeocene benthic extinction event. Terra Nova 9:95-9 CrossRef
    60. Schmitz B, Molina E, von Salis K (1998) The Zumaya section in Spain: a possible global stratotype section for the Selandian and Thanetian Stages. Newsl Stratigr 36:35-2
    61. Schmitz B, Peucker-Ehrenbrink B, Heilmann-Clausen C, Aberg G, Asaro F, Lee AC-T (2004) Basaltic explosive volcanism, but no comet impact, at the Paleocene–Eocene boundary: high-resolution chemical and isotopic records from Egypt, Spain and Denmark. Earth Planet Sci Lett 225:1-7 CrossRef
    62. Schmitz B, Pujalte V, Molina E, Monechi S, Orue-Etxebarria X, Speijer RP, Alegret L, Apellaniz E, Arenillas I, Aubry M-P, Baceta J-I, Berggren WA, Bernaola G, Caballero CA, Dinarès-Turell J, Dupuis C, Heilmann-Clausen C, Orús AH, Knox R, Martín-Rubio M, Ortiz S, Payros A, Petrizzo MR, von Salis K, Sprong J, Steurbaut E, Thomsen E (2011) The global stratotype sections and points for the bases of the Selandian (Middle Paleocene) and Thanetian (Upper Paleocene Paleocene) stages at Zumaia, Spain. Episodes 34(4):220-43
    63. Schouten S, Woltering M, Rijpstra WIC, Sluijs A, Brinkhuis H, Sinninghe Damsté JS (2007) The Paleocene–Eocene carbon isotope excursion in higher plant organic matter: differential fractionation of angiosperms and conifers in the Arctic. Earth Planet Sci Lett 258:581-92 CrossRef
    64. Schulte P, Scheibner C, Speijer RP (2011) Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene–Eocene Thermal Maximum in the Dababiya Quarry section. Egypt Chem Geol 285:167-83 CrossRef
    65. Schultz LG (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre shale. US Geol Survey Prof Paper 391-C, Washington
    66. Soliman MF (2003) Chemostratigraphy of the Paleocene/Eocene (P/E) boundary sediments at Gabal Qreiya, Nile Valley, Egypt. Micropaleontology 49:123-38 CrossRef
    67. Soliman MF, Essa MA (2003) Dakhla Shale (Beida Shale Member) at G Duwi, Red Sea Coast, Egypt: Mineralogical and Sedimentological Aspects, The third international Conference on the Geology of Africa, Assiut University, Egypt. Geol Soc Afr 2:283-05
    68. Soliman MF, Obaidalla NA (2010) Danian-Selandian transition at Gabal Qreiya section, Nile Valley (Egypt): lithostratigraphy, biostratigraphy, mineralogy and geochemistry. N Jb Geol Pal?ont (Abh) 258/1:1-0. doi:10.1127/0077-7749/2010/0078 CrossRef
    69. Soliman MF, Ahmed EA, Kurzweil H (2006) Geochemistry and mineralogy of the Paleocene/Eocene boundary at Gabal Dababiya (GSSP) and Gabal Owaina sections, Nile Valley, Egypt. Stratigraphy 3:31-3
    70. Soliman MF, Aubry M-P, Schmitz B, Sherrell R (2011) Enhanced coastal paleoproductivity and nutrient supply in Upper Egypt during the Paleocene/Eocene Thermal Maximum (PETM): mineralogical and geochemical evidence. Palaeogeogr Palaeoclimatol Palaeoecol 310:365-77. doi:10.1016/j.palaeo.2011.07.027 CrossRef
    71. Speijer RP (2003) Danian-Selandian sea-level change and biotic excursion on the southern Tethyan margin (Egypt). In: Wing SL, Gingerich PD, Schmitz B, Thomas E (eds) Causes and consequences of globally warm climates in the Early Paleogene, vol 369, GSA. Spec. Pap., pp 275-90 CrossRef
    72. Sprong J, Speijer RP, Steurbaut E (2009) Biostratigraphy of the Danian/Selandian transition in the southern Tethys. Special reference to the Lowest Occurrence of planktic foraminifera Igorina albeari. Geol Acta 7:63-7
    73. Sprong J, Youssef MA, Pornemann A, Schulte P, Steurbaut E, Stassen P, Kouwenhoven TJ, Speijer RP (2011) A multi-proxy record of the Latest Danian Event at Gebel Qreiya, Eastern Desert. Egypt. J Micropaleontol 30:167-82 CrossRef
    74. Sprong J, Kouwenhoven TJ, Bornemann A, Schulte P, Stassen P, Steurbaut E, Youssef M, Speijer RP (2012) Characterization of the Latest Danian Event by means of benthic foraminiferal assemblages along a depth transect at the southern Tethyan margin (Nile Basin, Egypt). Mar Micropaleontol 86-7:15-1 CrossRef
    75. Stüben D, Kramar U, Berner Z, Stinnesbeck W, Keller G, Adatte T (2002) Trace elements, stable isotopes, and clay mineralogy of the Elles II K-T boundary section in Tunisia: indications for sea level fluctuations and primary productivity. Palaeogeogr Palaeoclimatol Palaeoecol 178:321-45. doi:10.1016/S0031-0182(01)00401-1 CrossRef
    76. Summerhayes CP (1983) Sedimentation of organic matter in upwelling regions. In: Thiede J, Suess E, (eds) Coastal upwelling, its sedimentary records. Part B: Sedimentary records of ancient coastal upwelling: NATO Conference Series. IV, New York and London, Plenum Press. Mar Sci 10B:29-2
    77. Suzuki N, Ishida K, Shinomiya Y, Ishiga H (1998) High productivity in the earliest Triassic ocean: black shales, Southwest Japan. Palaeogeogr Palaeoclimatol Palaeoecol 141:53-5 CrossRef
    78. Thiry M (2000) Palaeoclimate interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth-Sci Rev 49:201-21 CrossRef
    79. Thomas E, Zachos JC (2000) Was the late Paleocene thermal maximum a unique event? In: Schmitz B, Sundquist B, Andreasson FP (eds) Early Paleogene warm climates and biosphere dynamics, vol 122, GFF., pp 169-70
    80. Thomas DJ, Zachos JC, Bralower TJ, Thomas E, Bohaty S (2002) Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene–Eocene thermal maximum. Geology 30:1067-070 CrossRef
    81. Toumarkine M, Luterbacher H (1985) Paleocene and Eocene Planktic Foraminifera. In: Bolli H, Saunders J, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 87-54
    82. Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12-2 CrossRef
    83. Tribovillard N, Bout-Roumazeilles V, Algeo T, Lyons TW, Sionneau T, Montero-Serrano JC, Riboulleau A, Baudin F (2008) Paleodepositional conditions in the Orca Basin as inferred from organic matter and trace metal contents. Mar Geol 254:62-2 CrossRef
    84. Van Morkhoven FC, Berggren WA, Edwards AS (1986) Cenozoic cosmopolitan deep-water benthic foraminifera. Bull Centres Rech Explor Prod Elf-Aquitaine Mem 421
    85. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci 37:29-8 CrossRef
    86. Wedepohl KH (1991) The composition of the upper earth’s crust and the natural cycles of selected metals: metals in natural raw materials. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim, pp 3-7
    87. Werne JP, Sageman BB, Lyons T, Hollander DJ (2002) An integrated assessment of a “type euxinic-deposit: evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. Am J Sci 302:110-43 CrossRef
    88. Westerhold T, R?hl U, Donner B, McCarren H, Zachos J (2011) A complete high-resolution Paleocene benthic stable isotope record for the Central Pacific (ODP site 1209). Paleoceanography 26, PA2216. doi:10.1029/2010PA002092 CrossRef
    89. Wing SL, Gingerich PD, Schmitz B, Thomas E (eds) (2003) Causes and consequences of globally warm climates in the early Paleogene. Special Paper, 369. The Geological Society of America, Boulder, p 614
    90. Youssef M (2009) High resolution calcareous nannofossil biostratigraphy and paleoecology across the Latest Danian Event (LDE) in central Eastern Desert, Egypt. Mar Micropaleontol 72:111-28. doi:10.1016/j.marmicro.2009.03.007 CrossRef
    91. Zachos JC, Pagani M, Sloan L, Thomas DJ, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686-93 CrossRef
    92. Zachos JC, Wara MW, Bohaty S, Delaney MI, Petrizzo MR, Brill A, Bralowere TJ, Premoli Silva I (2003) A transient rise in tropical sea surface temperature during the Paleocene–Eocene Thermal Maximum. Science 203:1551-554 CrossRef
    93. Zhou C, Jiang S-Y (2009) Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeogr Palaeoclimatol Palaeoecol 271:279-86 CrossRef
  • 作者单位:Mamdouh F. Soliman (1)
    Nageh A. Obaidalla (1)
    Ezzat A. Ahmed (1)
    Ahmed A. Ahmed (1)
    Johannes Kurzweil (2)

    1. Department of Geology, Faculty of Science, Assiut University, 71516, Assiut, Egypt
    2. Institute of Geological Sciences, University of Vienna, Vienna, Austria
  • ISSN:1866-7538
文摘
The Qreiya Beds that record the ‘mid-Paleocene event-at Gabal Nezzazat occur within the Igorina albeari (P3b) Zone and constitute part of a 14-m thick shale succession that ranges in age from Early to Late Paleocene. They are composed of four alternating dark grey and brown shale beds, which are thinly laminated, phosphatic, organic-rich and extremely sulphidic. They are characterized by distinct enrichment and high peak anomalies in chalcophiles (Zn, Co, Ni, Cu and Pb) and organic association elements (V and Cr), especially within the brown organic-rich beds. It is concluded that these elements are incorporated into the phosphatic debris, sulphides and organic matter. In contrast, the grey beds are enriched in clay minerals and quartz. Clay mineral assemblages indicate alternating periods of warm/humid climate (high kaolinite) and dry climate (low kaolinite) during the formation of the grey and brown beds, respectively. The sediments of the Qreiya Beds yield lithological, biotic, geochemical and mineralogical data indicative of suboxic/anoxic marine environments as a result of high productivity and/or upwelling. The top metre of the succession below the Qreiya Beds is characterized by a progressive change from faunas dominated by praemurcurids to faunas dominated by Morozovilids, and by a progressive upward decrease in δ13Ccarb and δ18Ocarb values. The foraminiferal faunal change may reflect shallowing and warming preceding deposition of the Qreiya Beds. The change in isotopic values is inferred to be the result of surface weathering, fluvial input and diagenesis with no evidence of any primary change that could support presence of a hyperthermal event.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700